目 次

1	設計条件	1
	1-1 構造形式	1
	1-2 単位体積重量	1
	1-3 諸元	1
	1-4 許容応力度	1
	1-5 載荷重	1
	1-6 躯体形状	2
2	ラーメン解析モデル	3
	2-1 ラーメン寸法	3
	2-2 座標データ	3
	2-2-1 座標データ	
	2-3 部材データ	3
3	主働土圧係数	4
4	荷重計算モデル	5
	4-1 側壁に作用する荷重	5
	4-2 底版に作用する荷重	6
	4-3 断面力図	7
5	応力度計算	9
	5-1 常時	
	5-2 地震時	
	5-3 応力度計算結果一覧表	
6	浮き上がりの検討	15
		 15
	6-2 地震時	15

翼壁の設計

1 設計条件

1-1 構造形式

U型翼壁 H = 3.000 m

1-2 単位体積重量

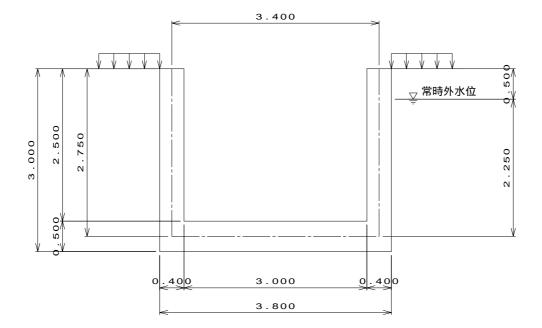
鉄筋コンクリートの単位体積重量 c = 24.50 kN/m³ 土(湿潤)の単位体積重量 s = 18.60 kN/m³ 土(飽和)の単位体積重量 t = 19.60 kN/m³ 水の単位体積重量 w = 9.80 kN/m³

1-3 諸元

設計水平震度 空中 $K_h = 0.20$ 水中 $K_h' = 0.00$ 土の内部摩擦角 = 30.00 $^\circ$

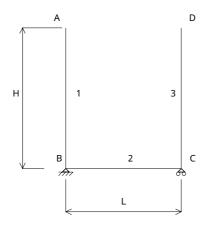
静止土圧係数 K_o = 0.50

1-4 許容応力度


項目	記号	単位	常時	地震時
鉄筋許容引張応力度	sa	N/mm²	160.0	300.0
コンクリート許容曲げ圧縮応力度	ca	N/mm²	8.0	12.0
コンクリート許容せん断応力度	а	N/mm²	0.39	0.58

ヤング係数比 n = 15

1-5 載荷重


常時 $q=3.43~kN/m^2$ 地震時 $q=3.43~kN/m^2$ 土被り $H_s=0.000~m$

1-6 躯体形状

2 ラーメン解析モデル

2-1 ラーメン寸法

2-2 座標データ

2-2-1 座標データ

節点符号	x 座標	y 座標
	(m)	(m)
А	0.000	2.750
В	0.000	0.000
С	3.400	0.000
D	3.400	2.750

2-3 部材データ

部材番号	節点	符号	断面積	断面2次
	開始	終了	(m²)	モーメント(m⁴)
1	В	Α	0.400	0.00533
2	В	С	0.500	0.01042
3	С	D	0.400	0.00533

3 主働土圧係数

背面が鉛直面となす角度 背面土砂の単位体積重量 背面土砂の内部摩擦角 地表面が水平面となす角度 壁面摩擦角 水位以上の地震時合成角 水位以下の地震時合成角

(1)常時

$$K_{A} = \frac{\cos^{2}(-)}{\cos^{2}\cos(+)[1+\sqrt{\frac{\sin(+)\sin(-)}{\cos(+)\cos(-)}}]^{2}}$$

$$= 0.308$$

(2)地震時

$$K_{EA} = \frac{\cos^2(--)}{\cos^2\cos^2\cos(++)[1+\sqrt{\frac{\sin(+)\sin(--)}{\cos(++)\cos(-)}}]^2}$$

$$K_{EA}' = \frac{\cos^2(--'-)}{\cos'(\cos^2\cos(+'+'))[1+\sqrt{\frac{\sin(+')\sin(--')}{\cos(+'+')\cos(-')}}]^2}$$

4 荷重計算モデル

4-1 側壁に作用する荷重

(1)常時

土圧作用位置 (地表面から)

側壁下端 H₂ = 2.750 (m)

外水位面 H₃ = 0.500 (m)

土圧強度

上載荷重分 q₁ = K₀ • q = 0.50 × 3.43

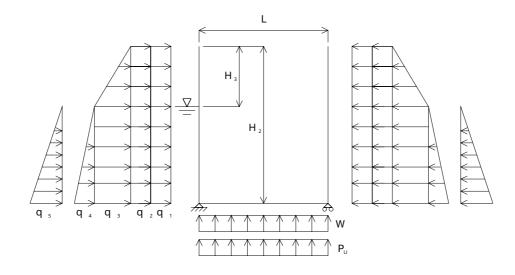
 $= 1.72 \text{ kN/m}^2$

側壁上端 q₂ = K₆・H₈・ s = 0.50×0.000×18.60

 $= 0.00 \text{ kN/m}^2$

地下水位 q₃ = K₀ · H₃ · s = 0.50 × 0.500 × 18.60

 $= 4.65 \text{ kN/m}^2$


側壁下端水中 q₄ = K₀・(t - w)・(H₂ - H₃)

 $= 0.50 \times (19.60 - 9.80) \times (2.750 - 0.500)$

 $= 11.03 \text{ kN/m}^2$

外水位強度

側壁下端水圧
$$q_5 = w \cdot (H_2 - H_3) = 9.80 \times (2.750 - 0.500)$$

= 22.05 kN/m²

(2)地震時

主働土圧強度

上載荷重分 q₁ = K・q・cos

側壁上端 q_年 = K・H_s・ s・cos

地下水位 q₃E = K · H₃ · s · cos

側壁下端水中 q4E = K · (t - w) · (H2 - H3) · cos

地震時静止土圧強度は次式により求める。

$$q_{0E} = q_0 + (q_{HE} - q_H)$$

ここに、

K : 主働土圧係数

q_i : 各深さでの土圧強度 (kN/m²)

:壁面摩擦角(°)

qæ: 地震時静止土圧強度 (kN/m²)

q。: 常時静止土圧強度 (kN/m²)

Q₁: 主働土圧を仮定した場合の地震時の土圧強度 (kN/m²) Q₁: 主働土圧を仮定した場合の常時の土圧強度 (kN/m²)

土圧作用位置(地表面から)

側壁下端 H₂ = 2.750 (m)

外水位面 H₃ = 3.000 (m)

土圧強度

	常時静止土圧分	地震時主働土圧分	常時主働土圧分	地震時静止土圧
	(k N/m²)	(kN/m²)	(kN/m²)	(k N/m²)
上載荷重分 q₁E	1.72	1.62	1.04	2.30
側壁上端 qzē	0.00	0.00	0.00	0.00
地下水位 qae	27.90	26.39	16.93	37.36
側壁下端水中 q4E	0.00	0.00	0.00	0.00

外水位強度

側壁下端水圧
$$q_5 = w \cdot (H_2 - H_3) = 9.80 \times (2.750 - 3.000)$$

= 0.00 kN/m²

4-2 底版に作用する荷重

側壁自重 $P_w = t_3 \cdot H_2 \cdot c = 0.400 \times 2.750 \times 24.50$

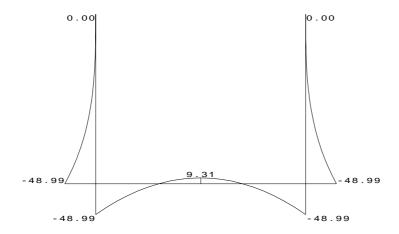
= 26.95 kN/(一箇所)

自重底版反力 W = 2 · Pw / L = 2 × 26.95 / 3.400

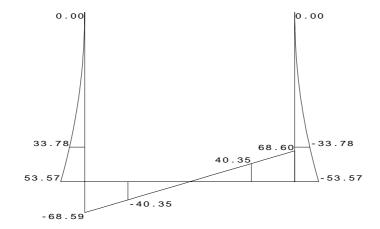
 $= 15.85 \text{ kN/m}^2$

揚圧力 常時 P_u = w⋅H_w = 9.80×2.500

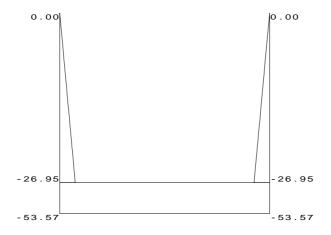
 $= 24.50 \text{ kN/m}^2$


地震時 Pu' = w・Hw = 9.80×0.000

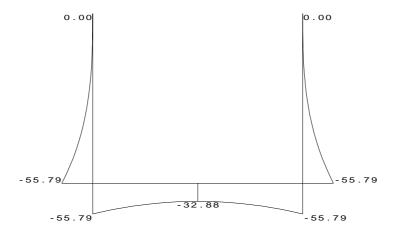
 $= 0.00 \text{ kN/m}^2$


4-3 断面力図

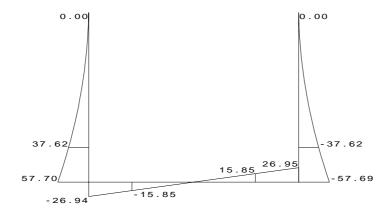
(1)常時


a.曲げモーメント

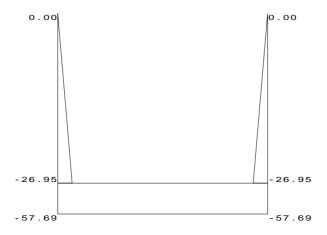
b.せん断力



c.軸力



(1)地震時


a.曲げモーメント

b.せん断力

c.軸力

5 応力度計算

5-1 常時

5-1-1 たて壁

(1)たて壁 下端部

鉄筋は D22 ctc 250 の配置とする

曲げモーメント	M	=	48990000	N• mm
せん断力	S	=	53570	N
部材幅	b	=	1000	mm
部材高	D	=	400	mm
かぶり	d'	=	120	mm
有効高	d	=	280	mm
使用鉄筋量	$A_{\!s}$	=	1548.4	${\rm mm}^2$

圧縮縁から中立軸までの距離 X = 93 mm

 $s = 127.1 \text{ N/mm}^2$

 $c = 4.2 \text{ N/mm}^2$

 $= S / (b \cdot d) = 53570 / (1000 \times 280) = 0.19 N/mm²$

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	127.1	٧	160.0	OK
コンクリート曲げ圧縮応力度	N/mm²	4.2	<	8.0	OK
コンクリートせん断応力度	N/mm²	0.19	<	0.39	OK

(2)たて壁 せん断照査位置

照査位置:付根から 0.310 m

鉄筋は D22 ctc 250 の配置とする

せん断力	S =	33780	N
部材幅	b =	1000	mm
部材高	D =	400	mm
かぶり	d' =	120	mm
有効高	d =	280	mm

 $= S / (b \cdot d) = 33780 / (1000 \times 280) = 0.12 \text{ N/mm}^2$

項目	単位	実応力度		許容応力度	判定
コンクリートせん断応力度	N/mm ²	0.12	<	0.39	OK

5-1-2 底版

(1)底版 左(右)端部

鉄筋は D25 ctc 250 の配置とする

曲げモーメント	M =	48990000	N• mm
せん断力	S =	68600	N
部材幅	b =	1000	mm
部材高	D =	500	mm
かぶり	d' =	150	mm
有効高	d =	350	mm
使用鉄筋量	$A_s =$	2026.8	${\rm mm^2}$

圧縮縁から中立軸までの距離 X = 119 mm

 $s = 77.9 \text{ N/mm}^2$ $c = 2.7 \text{ N/mm}^2$

 $= S / (b \cdot d) = 68600 / (1000 \times 350) = 0.20 \text{ N/mm}^2$

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	77.9	<	160.0	OK
コンクリート曲げ圧縮応力度	N/mm²	2.7	<	8.0	OK
コンクリートせん断応力度	N/mm²	0.20	<	0.39	OK

(2) 底版 左(右) せん断照査位置

照査位置:付根から 0.500 m

鉄筋は D25 ctc 250 の配置とする

せん断力 S = 40350 N 部材幅 b = 1000 mm 部材高 D = 500 mm かぶり d' = 150 mm 有効高 d = 350 mm

 $= S / (b \cdot d) = 40350 / (1000 \times 350) = 0.12 \text{ N/mm}^2$

項目	単位	実応力度		許容応力度	判定
コンクリートせん断応力度	N/mm²	0.12	<	0.39	OK

(3) 底版 中央

鉄筋は D16 ctc 250 の配置とする

曲げモーメント	M =	9310000	N• mm
部材幅	b =	1000	mm
部材高	D =	500	mm
かぶり	d' =	120	mm
有効高	d =	380	mm
使用鉄筋量	$A_s =$	794.4	${\rm mm}^2$

圧縮縁から中立軸までの距離 X = 84 mm

 $s = 33.3 \text{ N/mm}^2$ $c = 0.6 \text{ N/mm}^2$

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	33.3	<	160.0	OK
コンクリート曲げ圧縮応力度	N/mm²	0.6	<	8.0	OK

5-2 地震時

5-2-1 たて壁

(1)たて壁 下端部

鉄筋は D22 ctc 250 の配置とする

曲げモーメント	M =	55790000	N• mm
せん断力	S =	57700	N
部材幅	b =	1000	mm
部材高	D =	400	mm
かぶり	d' =	120	mm
有効高	d =	280	mm
使用鉄筋量	$A_s =$	1548.4	$\rm mm^2$

圧縮縁から中立軸までの距離 X = 93 mm

 $s = 144.7 \text{ N/mm}^2$

 $c = 4.8 \text{ N/mm}^2$

 $= S / (b \cdot d) = 57700 / (1000 \times 280) = 0.21 \text{ N/mm}^2$

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	144.7	<	300.0	OK
コンクリート曲げ圧縮応力度	N/mm²	4.8	<	12.0	OK
コンクリートせん断応力度	N/mm²	0.21	<	0.58	OK

(2)たて壁 せん断照査位置

照査位置:付根から 0.310 m

鉄筋は D22 ctc 250 の配置とする

せん断力	S =	37620 N
部材幅	b =	1000 mm
部材高	D =	400 mm
かぶり	d' =	120 mm
有効高	d =	280 mm

 $= S / (b \cdot d) = 37620 / (1000 \times 280) = 0.13 \text{ N/mm}^2$

項目	単位	実応力度		許容応力度	判定
コンクリートせん断応力度	N/mm ²	0.13	'	0.58	OK

5-2-2 底版

(1) 底版 左(右)端部

鉄筋は D25 ctc 250 の配置とする

曲げモーメント	M =	55790000	N• mm
せん断力	S =	26950	N
部材幅	b =	1000	mm
部材高	D =	500	mm
かぶり	d' =	150	mm
有効高	d =	350	mm
使用鉄筋量	$A_s =$	2026.8	${\rm mm}^2$

圧縮縁から中立軸までの距離 X = 119 mm

 $s = 88.7 \text{ N/mm}^2$

 $c = 3.0 \text{ N/mm}^2$

 $= S / (b \cdot d) = 26950 / (1000 \times 350) = 0.08 N/mm²$

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	88.7	'	300.0	OK
コンクリート曲げ圧縮応力度	N/mm²	3.0	<	12.0	OK
コンクリートせん断応力度	N/mm²	0.08	<	0.58	OK

(2) 底版 左(右) せん断照査位置

照査位置:付根から 0.500 m

鉄筋は D25 ctc 250 の配置とする

せん断力 S = 15850 N 部材幅 b = 1000 mm 部材高 D = 500 mm かぶり d' = 150 mm 有効高 d = 350 mm

 $= S / (b \cdot d) = 15850 / (1000 \times 350) = 0.05 N/mm²$

項目	単位	実応力度		許容応力度	判定
コンクリートせん断応力度	N/mm ²	0.05	<	0.58	OK

(3) 底版 中央

鉄筋は D16 ctc 250 の配置とする

曲げモーメント M = 32880000 N·mm 部材幅 b = 1000 mm 部材高 D = 500 mm がぶり d' = 120 mm 有効高 d = 380 mm 使用鉄筋量 A_s = 794.4 mm²

圧縮縁から中立軸までの距離 X = 84 mm

 $s = 117.6 \text{ N/mm}^2$ $c = 2.2 \text{ N/mm}^2$

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	117.6	<	300.0	OK
コンクリート曲げ圧縮応力度	N/mm²	2.2	<	12.0	OK

5-3 応力度計算結果一覧表

曲げ応力度

荷重ケース	部位	曲げモーメント M(kN·m)	コンクリートの圧縮応力度 (N/mm²)	鉄筋の引張応力度 (N/mm²)	判定
			c ca	s sa	
	たて壁	48.99	4.2 < 8.0	127.1 < 160.0	OK
常時	底版端部	48.99	2.7 < 8.0	77.9 < 160.0	OK
	底版中央	9.31	0.6 < 8.0	33.3 < 160.0	OK
	たて壁	55.79	4.8 < 12.0	144.7 < 300.0	OK
地震時	底版端部	55.79	3.0 < 12.0	88.7 < 300.0	OK
	底版中央	32.88	2.2 < 12.0	117.6 < 300.0	OK

せん断応力度

荷重ケース	部位	せん断力 S(kN)	コンクリートのせん断応力度 (N/mm²) _a	判定
*****	たて壁	33.78	0.12 < 0.39	OK
常時	底版端部	40.35	0.12 < 0.39	OK
北雪中	たて壁	37.62	0.13 < 0.58	OK
地震時	底版端部	15.85	0.05 < 0.58	OK

6 浮き上がりの検討

6-1 常時

翼壁自重

$$P = (2.500 \times 0.400 \times 2 + 0.500 \times 3.800) \times 24.50$$

= 95.55 kN/m

揚圧力

6-2 地震時

翼壁自重

$$P = (2.500 \times 0.400 \times 2 + 0.500 \times 3.800) \times 24.50$$

= 95.55 kN/m

揚圧力

$$U = 0.000 \times 3.800 \times 9.80 = 0.00 \text{ kN}$$

$$F_s = \frac{P}{U} = \frac{95.55}{0.00} > \frac{4}{3} \quad \text{OK}$$