目 次

1	設計条件	1
•	1-1 単位体積重量	_ '
	1-2 諸元、荷重	1
	1-3 許容応力度	
	1-4 躯体形状	
^		
2	断面諸定数	4
	2-1 柱断面	
	2-1-1	
	2-2 操作台	
	2-2-1 面積	5
	2-2-2 体積	
	2-2-3 斜線部の断面二次モーメント	6
_		`
3	組合せ荷重ケース	/
4	横方向の設計	8
	4-1 ラーメン解析モデル	8
	4-1-1 ラーメン寸法	8
	4-1-2 座標データ	
	4-1-3 部材データ	
	4-2 荷重の計算 4-2-1 組合せケース 1	
	4-2-2 組合せケース 2	10
	4-3 設計断面力	
	4-3-1 組合せケース 1	_ 12
	4-3-2 組合せケース 2	
	4-4 設計断面力の集計	
	4-5 設計断面力の配分	
	4-5-1 枉	
	4-6 応力度計算	
	4-6-1 柱1(軸力考慮する)	
	4-6-2 柱2(軸力考慮する)	
	4-6-3 操作台 (軸力考慮しない)	
	4-7 一覧表	22
	4-7-7 組合 ピケース 1	
_		
5	縦方向の設計	_ 23
	5-1 荷重の計算	23
	5-1-7 組合 ピケース 7	
	5-2 設計断面力の集計	
	5-3 応力度計算	
	5-3-1 柱	
	5-4 一覧表	32
	5-4-1 組合せケース 1	_ 32
	5-//- / AU = 11/1 = / /	

門柱の設計

1 設計条件

1-1 単位体積重量

鉄筋コンクリートの単位体積重量 c = 25.00 kN/m³

1-2 諸元、荷重

群集荷重 (常時)Wu = 3.50 kN/m²(地震時)Wud = 0.00 kN/m²風荷重Wp = 3.00 kN/m²上屋荷重Who = 100.00 kN上屋の高さhe = 3.000 m

管理橋反力 (死+活) $R_{d+1} = 8.10 \text{ kN/1箇所}$ (死) $R_{d} = 2.60 \text{ kN/1箇所}$

管理橋の桁間隔Wol =1.400 m金物取付部コンクリート重量Wto =3.50 kN/m設計水平震度Kh =0.200

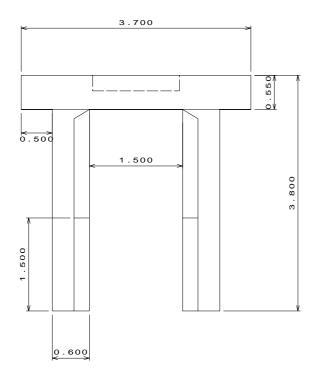
 開閉機及びゲート自重等によるスラブ反力
 P1 = 27.00 kN/門

 開閉機重量
 Wm = 8.00 kN

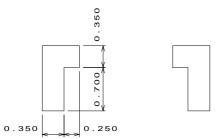
 ゲート自重
 Wg = 5.00 kN

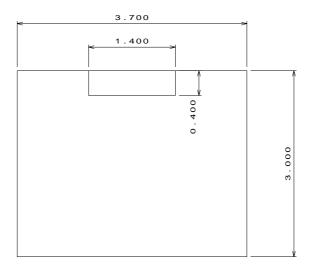
 開閉機吊り本数
 mt = 1 本

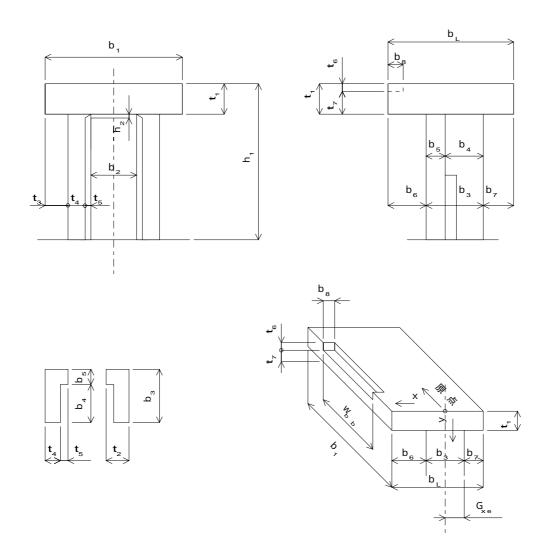
 温度変化 (上昇時)
 T1 = 15.0


 温度変化 (下降時)
 T2 = -15.0


 線熱膨張係数
 = 1.00×10⁻⁵


1-3 許容応力度


項目	記号	単位	設定値	
点	마느	工 四	柱	操作台
鉄筋許容引張応力度(常 時基準値)	sa	N/mm²	160.0	160.0
(地震時基準値)	sa	N/mm²	200.0	200.0
コンクリート許容曲げ圧縮応力度	ca	N/mm²	8	3.0
コンクリート許容せん断応力度	а	N/mm²	0	. 39


1-4 躯体形状

項目	記号	(m)	項目	記号	(m)
全高	h ₁	3.800	柱部	b₃	1.050
操作台幅	b ₁	3.700		b ₄	0.700
操作台厚さ	t ₁	0.550		b₅	0.350
柱部	t ₂	0.600		b ₆	0.975
	t ₃	0.500		b ₇	0.975
	t ₄	0.350	管理橋切り欠き部	b ₈	0.400
	t ₅	0.250		t ₆	0.250
				t ₇	0.300
ハンチ部	h ₂	0.150		W _{bb}	1.400
操作台奥行き	b∟	3.000	ゲート高	hg	1.500
柱間の距離	b ₂	1.500	開閉機設置位置	G _{v4L}	1.675

2 断面諸定数

2-1 柱断面

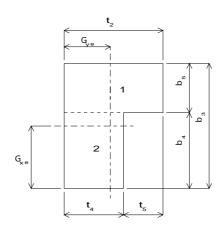
2-1-1 面積

2-1-2 図心

$$\begin{split} G_{xe} &= \begin{array}{l} \frac{A_{e1} \cdot (b_4 + 0.5 \cdot b_5) + 0.5 \cdot A_{e2} \cdot b_4}{A_e} \\ &= \begin{array}{l} \frac{0.210 \times (0.700 + 0.5 \times 0.350) + 0.5 \times 0.245 \times 0.700}{0.455} \\ &= 0.592 \text{ m} \\ G_{ye} &= \begin{array}{l} \frac{0.5 \cdot A_{e1} \cdot t_2 + 0.5 \cdot A_{e2} \cdot t_4}{A_e} \\ &= \begin{array}{l} \frac{0.5 \times 0.210 \times 0.600 + 0.5 \times 0.245 \times 0.350}{0.455} \\ &= 0.233 \text{ m} \end{array} \end{split}$$

2-1-3 断面二次モーメント

a) 断面1のy方向に対して


$$I_{\text{ye1}} = \frac{b_5 \cdot t_2^3}{12} = \frac{0.350 \times 0.600^3}{12} = 0.00630 \text{ m}^4$$

b) 断面2のy方向に対して

$$I_{ye2} = \frac{b_4 \cdot t_4^3}{12} = \frac{0.700 \times 0.350^3}{12} = 0.00250 \text{ m}^4$$

以上によりy軸に対する断面二次モーメントは、次のようになる。

$$\begin{split} I_{ye} &= I_{ye1} + I_{ye2} + A_{e1} \cdot (\frac{t_2}{2})^2 + A_{e2} \cdot (\frac{t_4}{2})^2 - A_e \cdot G_{ye}^2 \\ &= 0.00630 + 0.00250 + 0.210 \times (\frac{0.600}{2})^2 \\ &+ 0.245 \times (\frac{0.350}{2})^2 - 0.455 \times 0.233^2 \\ &= 0.01050 \text{ m}^4 \end{split}$$

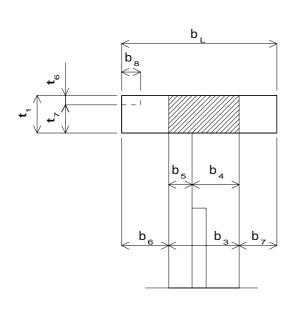
2-2 操作台

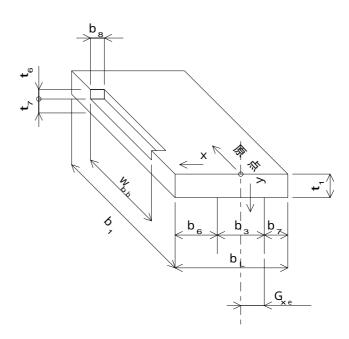
操作台には管理橋を受ける切り欠きを設けるため、その部分を差し引いて換算する。

2-2-1 面積

$$A_b = b_L \cdot t_1 - b_8 \cdot t_6 \cdot \frac{W_{bb}}{b_1}$$

$$= 3.000 \times 0.550 - 0.400 \times 0.250 \times \frac{1.400}{3.700}$$


$$= 1.612 \text{ m}^2$$


2-2-2 体積

$$V_s = b_L \cdot t_1 \cdot b_1 - b_8 \cdot t_6 \cdot w_{bb} + t_5 \cdot h_2 \cdot b_4$$

= 3.000 \times 0.550 \times 3.700 - 0.400 \times 0.250 \times 1.400 + 0.250 \times 0.150 \times 0.700
= 5.991 m³

2-2-3 斜線部の断面二次モーメント

$$I_{\text{by}} = \frac{b_3 \cdot t_1^3}{12} = \frac{1.050 \times 0.550^3}{12} = 0.01456 \text{ m}^4$$

2-2-4 重心位置

x 方向

$$\begin{array}{lll} V_1 &=& \{ \ t_1 \cdot (b_7 + G_{xe}) \ \} \cdot b_1 = \{ \ 0.550 \times (0.975 + 0.592) \ \} \times 3.700 \\ &=& 3.189 \ \text{m}^3 \\ V_2 &=& \{ \ t_1 \cdot (b_6 + b_3 - G_{xe}) \ \} \cdot b_1 - t_6 \cdot b_8 \cdot W_{bb} \\ &=& \{ \ 0.550 \times (0.975 + 1.050 - 0.592) \ \} \times 3.700 - 0.250 \times 0.400 \times 1.400 \\ &=& 2.776 \ \text{m}^3 \end{array}$$

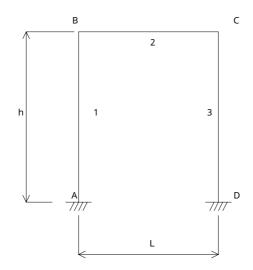
$$\begin{array}{lll} V_1 \cdot x_1 &=& \frac{V_1 \cdot \left(b_7 + G_{xe}\right)}{2} &=& \frac{3.189 \times \left(0.975 + 0.592\right)}{2} \\ &=& 2.498 \text{ m}^4 \\ V_2 \cdot x_2 &=& \frac{V_2 \cdot \left(b_6 + b_3 - G_{xe}\right)}{2} &=& \frac{2.776 \times \left(0.975 + 1.050 - 0.592\right)}{2} \\ &=& 1.989 \text{ m}^4 \end{array}$$

$$G_x = \frac{V_2 \cdot x_2 - V_1 \cdot x_1}{(V_1)} = \frac{-0.509}{5.965}$$

= -0.085 m

y 方向

$$\begin{array}{lll} V_1 \cdot y_1 &=& \frac{V_1 \cdot t_6}{2} &=& \frac{0.230 \times 0.250}{2} \\ &=& 0.029 \text{ m}^4 \\ V_2 \cdot y_2 &=& \frac{V_2 \cdot t_6}{2} &=& \frac{2.405 \times 0.250}{2} \\ &=& 0.301 \text{ m}^4 \\ V_3 \cdot y_3 &=& V_3 \cdot \left(t_6 + \frac{t_7}{2}\right) &=& 3.330 \times \left(0.250 + \frac{0.300}{2}\right) \\ &=& 1.332 \text{ m}^4 \end{array}$$


$$G_y = \frac{(V_i \cdot y_i)}{(V_i)} = \frac{1.661}{5.965}$$

= 0.279 m

3 組合せ荷重ケース

荷重名称	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6	ケース7	ケース8
常時		×	×	×	×	×	×	×
地震時	×		×	×	×	×	×	×
風荷重		×	×	×	×	×	×	×
温度荷重(上昇)	×	×	×	×	×	×	×	×
温度荷重(下降)	×	×	×	×	×	×	×	×
許容応力度の	1.25	1.50	1.00	1.00	1.00	1.00	1.00	1.00
割増し係数	1.25	1.50	1.00	1.00	1.00	1.00	1.00	1.00

4 横方向の設計

4-1 ラーメン解析モデル 4-1-1 ラーメン寸法

4-1-2 座標データ

節点符号	x 座標	y 座標
即从付与	(m)	(m)
А	0.000	0.000
В	0.000	3.525
С	2.234	3.525
D	2.234	0.000

4-1-3 部材データ

部材番号	節点	符号	断面積	断面2次
	開始	終了	(m²)	モーメント(m⁴)
1	Α	В	0.455	0.01050
2	В	С	1.612	0.01456
3	D	С	0.455	0.01050

4-2 荷重の計算

4-2-1 組合せケース 1

タイプ: 常時 + 風荷重

操作台

$$W_1 = \frac{A_b \cdot c \cdot b_1}{L}$$
=
$$\frac{1.612 \times 25.00 \times 3.700}{2.234} = 66.75 \text{ kN/m}$$

載荷重(群集荷重+上屋)

$$W_{1d} = \frac{b_L \cdot w_u \cdot b_1 + w_{ho}}{L}$$

$$= \frac{3.000 \times 3.50 \times 3.700 + 100.00}{2.234} = 62.15 \text{ kN/m}$$

柱の風荷重

 $W_2 = b_3 \cdot w_p = 1.050 \times 3.00 = 3.15 \text{ kN/m}$

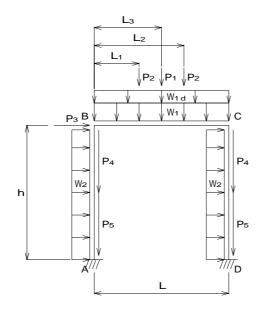
開閉装置及びゲート自重によるスラブ反力

 $P_1 = 27.00 \text{ kN}$

管理橋反力

 $P_2 = R_{d+1} = 8.10 \text{ kN}$

操作台及び上屋の風荷重


$$P_3 = (t_1 + h_e) \cdot b_L \cdot w_p = (0.550 + 3.000) \times 3.000 \times 3.00 = 31.95 \text{ kN}$$

柱自重

$$P_4 = A_e \cdot c = 0.455 \times 25.00 = 11.38 \text{ kN/m}$$

柱自重+金物取付部コンクリート重量

$$P_5 = W_{to} + A_e \cdot c = 3.50 + 0.455 \times 25.00 = 14.88 \text{ kN/m}$$

4-2-2 組合せケース 2

タイプ: 地震時

操作台

$$W_1 = \frac{A_b \cdot c \cdot b_1}{L}$$
= $\frac{1.612 \times 25.00 \times 3.700}{2.234} = 66.75 \text{ kN/m}$

載荷重(群集荷重+上屋)

$$W_{1d} = \frac{b_L \cdot w_{ud} \cdot b_1 + w_{ho}}{L}$$

$$= \frac{3.000 \times 0.00 \times 3.700 + 100.00}{2.234} = 44.76 \text{ kN/m}$$

柱慣性力

$$W_2 = A_e \cdot c \cdot K_h = 0.455 \times 25.00 \times 0.20 = 2.28 \text{ kN/m}$$
 ゲート+金物取付部コンクリートの慣性力

$$W_3 = (\frac{W_g}{h_g} + W_{to}) \cdot K_h = (\frac{5.00}{1.500} + 3.50) \times 0.20 = 1.37 \text{ kN/m}$$

金物取付部コンクリートの慣性力

$$W_4 = W_{to} \cdot K_h = 3.50 \times 0.20 = 0.70 \text{ kN/m}$$

ゲート自重+開閉装置自重

$$P_1 = W_g + W_m = 5.00 + 8.00 = 13.00 \text{ kN}$$

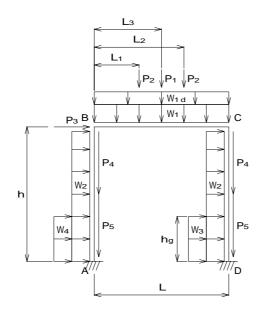
管理橋反力(死)

$$P_2 = R_d = 2.60 \text{ kN}$$

操作台+管理橋反力+開閉装置+上屋の慣性力

$$P_3 = (A_b \cdot c \cdot b_1 + 2 \cdot R_d + W_m + W_{ho}) \cdot K_h$$

= (1.612 \times 25.00 \times 3.700 + 2 \times 2.60 + 8.00 + 100.00) \times 0.20
= 52.46 kN

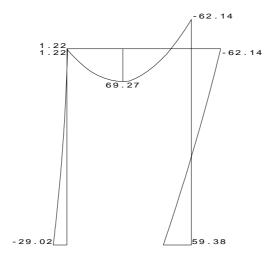

柱自重

$$P_4 = A_e \cdot c = 0.455 \times 25.00 = 11.38 \text{ kN/m}$$

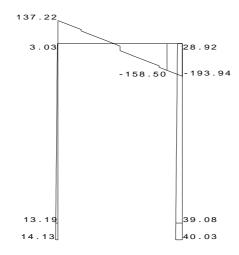
柱自重+金物取付部コンクリート重量

$$P_5 = W_{to} + A_e \cdot c = 3.50 + 0.455 \times 25.00 = 14.88 \text{ kN/m}$$

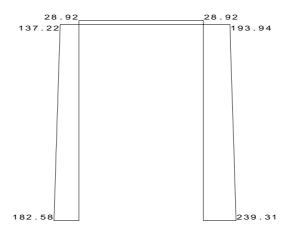
$$\begin{array}{l} L_1 = \begin{array}{l} \frac{L - W_{DL}}{2} = \frac{2.234 - 1.400}{2} = 0.417 \text{ m} \\ \\ L_2 = L_1 + W_{DL} = 0.417 + 1.400 = 1.817 \text{ m} \\ \\ L_3 = \begin{array}{l} \frac{L}{2} = \frac{2.234}{2} = 1.117 \text{ m} \end{array} \end{array}$$



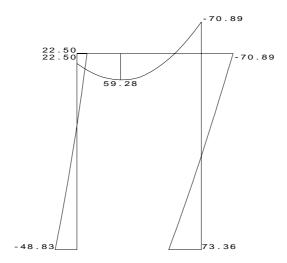
4-3 設計断面力


4-3-1 組合せケース 1

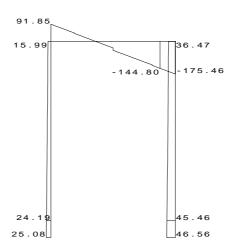
タイプ: 常時 + 風荷重


a.曲げモーメント

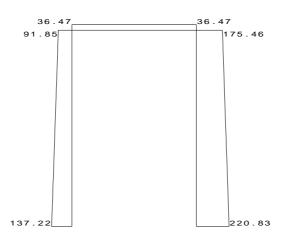
b.せん断力



c.軸力



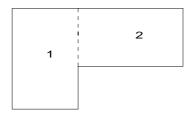
4-3-2 組合せケース 2 タイプ: 地震時


a.曲げモーメント

b.せん断力

c.軸力

4-4 設計断面力の集計


ケース番号	組合せタイプ	割増し係数
ケース1	常時 + 風荷重	1.25
ケース2	地震時	1.50

ケーフ来号	部材	曲げモーメント	せん断力	軸力
ケース番号 	<u>=1</u> 147	M (kN·m)	S (kN)	N (kN)
	柱 (A~B)	-29.02	14.13	182.58
ケース1	操作台 (B~C)	69.27	-193.94	28.92
	柱 (D~C)	-62.14	40.03	193.94
	柱 (A~B)	-48.83	25.08	137.22
ケース2	操作台 (B~C)	-70.89	-175.46	36.47
	柱 (D~C)	73.36	46.56	220.83

4-5 設計断面力の配分

4-5-1 柱

設計では、柱を1と2の部分に分割して複鉄筋長方形梁として行う。

部材	断面積	断面2次
司孙	(m²)	モーメント(m⁴)
柱 1	0.210	0.00630
柱 2	0.245	0.00250

ケース番号	柱部材	曲げモーメント	せん断力	軸力
ソース宙与	作工口2423	M (kN·m)	S (kN)	N (kN)
	全体	62.14	40.03	193.94
ケース1	1	44.49	18.48	89.51
	2	17.65	21.55	104.43
	全体	73.36	46.56	220.83
ケース2	1	52.52	21.49	101.92
	2	20.84	25.07	118.91

4-5-2 操作台

操作台は、斜線部に対する複鉄筋長方形梁として行う。

4-6 応力度計算

4-6-1 柱1(軸力考慮する)

a.組合せケース 1

タイプ : 常時 + 風荷重

鉄筋は D16× 2本 の配置とする

曲げモーメント	M	=	44490000 N·mm
せん断力	S	=	18480 N
軸力	Ν	=	89510 N
部材幅	b	=	350 mm
部材高	h	=	600 mm
かぶり	d'	=	110 mm
有効高	d	=	490 mm
使用鉄筋量	As	=	397.2 mm^2
圧縮縁から中立軸までの距離	Χ	=	166 mm

c = 4.6 N/mm^2 s = 133.8 N/mm^2 c = $\frac{\text{S}}{\text{b} \cdot \text{d}}$ = $\frac{18480}{350 \times 490}$ = 0.11 N/mm²

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	133.8	<	200.0	OK
コンクリート曲げ圧縮応力度	N/mm²	4.6	<	10.0	OK
コンクリートせん断応力度	N/mm²	0.11	<	0.49	OK

b.組合せケース 2 タイプ : 地震時

鉄筋は D16× 2本 の配置とする

曲げモーメント	М	=	52520000 N·mm
せん断力	S	=	21490 N
軸力	N	=	101920 N
部材幅	b	=	350 mm
部材高	h	=	600 mm
かぶり	d'	=	110 mm
有効高	d	=	490 mm
使用鉄筋量	A s	=	397.2 mm^2
圧縮縁から中立軸までの距離	Χ	=	164 mm

 $c = 5.4 \text{ N/mm}^2$ $s = 162.5 \text{ N/mm}^2$

$$c = \frac{S}{b \cdot d} = \frac{21490}{350 \times 490} = 0.13 \text{ N/mm}^2$$

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	162.5	<	300.0	OK
コンクリート曲げ圧縮応力度	N/mm²	5.4	<	12.0	OK
コンクリートせん断応力度	N/mm²	0.13	<	0.59	OK

4-6-2 柱2(軸力考慮する)

a.組合せケース 1

タイプ : 常時 + 風荷重

鉄筋は D16× 5本 の配置とする

曲げモーメント	M	=	17650000 N• mr
せん断力	S	=	21550 N
軸力	N	=	104430 N
部材幅	b	=	700 mm
部材高	h	=	350 mm
かぶり	d'	=	110 mm
有効高	d	=	240 mm
使用鉄筋量	A s	=	993.0mm^2
圧縮縁から中立軸までの距離	Χ	=	142 mm

c = 2.4 N/mm² s = 25.3 N/mm² c = $\frac{S}{b \cdot d}$ = $\frac{21550}{700 \times 240}$ = 0.13 N/mm²

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	25.3	<	200.0	OK
コンクリート曲げ圧縮応力度	N/mm²	2.4	<	10.0	OK
コンクリートせん断応力度	N/mm ²	0.13	<	0.49	OK

b.組合せケース 2 タイプ : 地震時

鉄筋は D16× 5本 の配置とする

曲げモーメント	M	=	20840000 N•mm
せん断力	S	=	25070 N
軸力	N	=	118910 N
部材幅	b	=	700 mm
部材高	h	=	350 mm
かぶり	d'	=	110 mm
有効高	d	=	240 mm
使用鉄筋量	A s	=	993.0mm^2
圧縮縁から中立軸までの距離	Χ	=	139 mm

 $c = 2.9 \text{ N/mm}^2$ $s = 31.8 \text{ N/mm}^2$

$$c = \frac{S}{b \cdot d} = \frac{25070}{700 \times 240} = 0.15 \text{ N/mm}^2$$

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	31.8	<	300.0	OK
コンクリート曲げ圧縮応力度	N/mm²	2.9	٧	12.0	OK
コンクリートせん断応力度	N/mm²	0.15	<	0.59	OK

4-6-3 操作台 (軸力考慮しない)

a.組合せケース 1

タイプ: 常時 + 風荷重

鉄筋は D16× 7本 の配置とする

曲げモーメント $M = 69270000 \text{ N} \cdot \text{mm}$ 193940 N せん断力 S = 部材幅 1050 mm b = 部材高 h = 550 mm d' = かぶり 65 mm 有効高 d = 485 mm $A_{s} = 1390.2 \text{ mm}^{2}$ X = 113 mm使用鉄筋量 圧縮縁から中立軸までの距離 X =

 $c = 2.3 \text{ N/mm}^2$ $s = 112.3 \text{ N/mm}^2$

$$c = \frac{S}{b \cdot d} = \frac{193940}{1050 \times 485} = 0.38 \text{ N/mm}^2$$

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	112.3	<	200.0	OK
コンクリート曲げ圧縮応力度	N/mm²	2.3	٧	10.0	OK
コンクリートせん断応力度	N/mm²	0.38	<	0.49	OK

b.組合せケース 2 タイプ : 地震時

鉄筋は D16× 7本 の配置とする

 曲げモーメント
 M = 70890000 N·mm

 せん断力
 S = 175460 N

 部材幅
 b = 1050 mm

 部材高
 h = 550 mm

 かぶり
 d' = 65 mm

 有効高
 d = 485 mm

 使用鉄筋量
 A s = 1390.2 mm²

 圧縮縁から中立軸までの距離
 X = 113 mm

 $c = 2.3 \text{ N/mm}^2$ $s = 114.9 \text{ N/mm}^2$

 $c = \frac{S}{b \cdot d} = \frac{175460}{1050 \times 485} = 0.34 \text{ N/mm}^2$

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	114.9	٧	300.0	OK
コンクリート曲げ圧縮応力度	N/mm²	2.3	<	12.0	OK
コンクリートせん断応力度	N/mm²	0.34	<	0.59	OK

4-7 一覧表

4-7-1 組合せケース 1

タイプ : 常時 + 風荷重

項目	記号	単位	柱 1	柱 2	操作台
曲げモーメント	М	N• mm	44490000	17650000	69270000
せん断力	S	N	18480	21550	193940
軸力	N	N	89510	104430	
部材幅	b	mm	350	700	1050
部材高	h	mm	600	350	550
圧縮かぶり	d'	mm	110	110	65
有効高	d	mm	490	240	485
鉄筋量		mm,本	D16× 2本	D16× 5本	D16× 7本
	As	mm²	397.2	993.0	1390.2
中立軸	Χ	mm	166	142	113
応力度	s	N/mm²	133.8	25.3	112.3
	С	N/mm^2	4.6	2.4	2.3
	С	N/mm^2	0.11	0.13	0.38
許容応力度	sa	N/mm²	200.0	200.0	200.0
	ca	N/mm^2	10.0	10.0	10.0
	ca	N/mm²	0.49	0.49	0.49

4-7-2 組合せケース 2 タイプ : 地震時

項目	記号	単位	柱 1	柱 2	操作台
曲げモーメント	М	N• mm	52520000	20840000	70890000
せん断力	S	N	21490	25070	175460
軸力	N	N	101920	118910	
部材幅	b	mm	350	700	1050
部材高	h	mm	600	350	550
圧縮かぶり	d'	mm	110	110	65
有効高	d	mm	490	240	485
鉄筋量		mm,本	D16× 2本	D16× 5本	D16× 7本
	As	mm ²	397.2	993.0	1390.2
中立軸	Х	mm	164	139	113
応力度	s	N/mm²	162.5	31.8	114.9
	С	N/mm^2	5.4	2.9	2.3
	С	N/mm^2	0.13	0.15	0.34
許容応力度	sa	N/mm²	300.0	300.0	300.0
	ca	N/mm^2	12.0	12.0	12.0
	ca	N/mm^2	0.59	0.59	0.59

5 縦方向の設計

縦方向の設計は、樋管本体の頂版に固定された片持梁として行う。

5-1 荷重の計算

5-1-1 組合せケース 1

タイプ: 常時 + 風荷重

a.荷重値

管理橋

$$G_{v1} = 2 \cdot R_{d+1} = 2 \times 8.10 = 16.20 \text{ kN}$$

開閉装置

$$G_{v2} = W_m = 8.00 \text{ kN}$$

操作台

$$G_{V3} = V_s \cdot c = 5.991 \times 25.00 = 149.78 \text{ kN}$$

$$G_{h3} = b_1 \cdot t_1 \cdot w_p = 3.700 \times 0.550 \times 3.00 = 6.11 \text{ kN}$$

柱

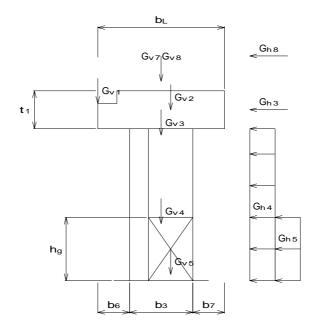
$$G_{v4} = 2 \cdot A_e \cdot c = 2 \times 0.455 \times 25.00 = 22.75 \text{ kN/m}$$

$$G_{h4} = 2 \cdot t_2 \cdot w_p = 2 \times 0.600 \times 3.00 = 3.60 \text{ kN/m}$$

ゲート

$$G_{v6} = \frac{W_g}{h_g} + 2 \cdot w_{to} = \frac{5.00}{1.500} + 2 \times 3.50 = 10.33 \text{ kN/m}$$

$$G_{h5} = b_2 \cdot w_p = 1.500 \times 3.00 = 4.50 \text{ kN/m}$$


載荷重

$$G_{v7} = b_L \cdot b_1 \cdot w_u = 3.000 \times 3.700 \times 3.50 = 38.85 \text{ kN}$$

上屋

$$G_{v8} = W_{ho} = 100.00 \text{ kN}$$

$$G_{h8} = b_1 \cdot h_e \cdot W_p = 3.700 \times 3.000 \times 3.00 = 33.30 \text{ kN}$$

b.曲げモーメント

鉛直力による曲げモーメント

$$G_{xx} = \frac{b_3}{2} = \frac{1.050}{2} = 0.525 \text{ m}$$

Gv4L = 1.675 m (開閉装置載荷位置)

管理橋

$$M_{v1} = G_{v1} \cdot \{b_L - (G_{xx} + b_7)\} = 16.20 \times \{3.000 - (0.525 + 0.975)\}$$

= 24.30 kN·m

開閉装置

$$M_{V2} = G_{V2} \cdot (G_{xx} + b_6 - G_{V4L}) = 8.00 \times (0.525 + 0.975 - 1.675)$$

= -1.40 kN·m

操作台

$$M_{V3} = G_{V3} \cdot (G_{xe} + G_x - G_{xx}) = 149.78 \times (0.592 + (-0.085) - 0.525)$$

= -2.70 kN·m

柱

$$M_{v4} = G_{v4} \cdot (h_1 - t_1) \cdot (G_{xe} - G_{xx}) = 22.75 \times (3.800 - 0.550) \times (0.592 - 0.525)$$

= 4.95 kN·m

ゲート

$$M_{V5} = G_{V5} \cdot h_g \cdot (G_{xx} + b_6 - G_{V4L}) = 10.33 \times 1.500 \times (0.525 + 0.975 - 1.675)$$

= -2.71 kN·m

載荷重

$$M_{V7} = G_{V7} \cdot \{ (G_{xx} + b_6) - \frac{b_L}{2} \} = 38.85 \times \{ (0.525 + 0.975) - \frac{3.000}{2} \}$$

= 0.00 kN·m

上屋

$$M_{V6} = G_{V6} \cdot \{ (G_{xx} + b_6) - \frac{b_L}{2} \} = 100.00 \times \{ (0.525 + 0.975) - \frac{3.000}{2} \}$$

= 0.00 kN·m

$$M_v = (M_{vi}) = 22.44 \text{ kN} \cdot \text{m}$$

水平力による曲げモーメント

操作台

$$M_{h3} = G_{h3} \cdot (h_1 - \frac{t_1}{2}) = 6.11 \times (3.800 - \frac{0.550}{2})$$

= 21.54 kN·m

柱

$$M_{h4} = \frac{G_{h4} \cdot (h_1 - t_1)^2}{2} = \frac{3.60 \times (3.800 - 0.550)^2}{2}$$
$$= 19.01 \text{ kN} \cdot \text{m}$$

ゲート

$$\begin{array}{lll} \mbox{M}_{hs} & = & \frac{G_{hs} \cdot h_g \,^2}{2} \, = \, \frac{4.50 \times 1.500^2}{2} \\ & = & 5.06 \, \mbox{ kN} \cdot \mbox{m} \end{array}$$

上屋

$$M_{h8} = G_{h8} \cdot (h_1 + \frac{h_e}{2}) = 33.30 \times (3.800 + \frac{3.000}{2})$$
$$= 176.49 \text{ kN} \cdot \text{m}$$

$$M_h = (M_{hi}) = 222.10 \text{ kN} \cdot \text{m}$$

以上により曲げモーメントは、

$$M = M_v + M_h = 22.44 + 222.10 = 244.54 \text{ kN} \cdot \text{m}$$

c.せん断力

$$S = G_{h3} + G_{h4} \cdot (h_1 - t_1) + G_{h5} \cdot h_g + G_{h8}$$

= 6.11 + 3.60 × (3.800 - 0.550) + 4.50 × 1.500 + 33.30
= 57.86 kN

d.軸力

$$N = G_{v1} + G_{v2} + G_{v3} + G_{v4} \cdot (h_1 - t_1) + G_{v5} \cdot h_g + G_{v7} + G_{v8}$$

$$= 16.20 + 8.00 + 149.78 + 22.75 \times (3.800 - 0.550) + 10.33 \times 1.500$$

$$+ 38.85 + 100.00$$

$$= 402.26 \text{ kN}$$

5-1-2 組合せケース 2

タイプ: 地震時

a.荷重値

管理橋

$$G_{v1} = 2 \cdot R_d = 2 \times 2.60 = 5.20 \text{ kN}$$

 $G_{h1} = G_{v1} \cdot K_h = 5.20 \times 0.20 = 1.04 \text{ kN}$

開閉装置

$$G_{v2} = W_m = 8.00 \text{ kN}$$

$$G_{h2} = G_{v2} \cdot K_h = 8.00 \times 0.20 = 1.60 \text{ kN}$$

操作台

$$G_{V3} = V_s \cdot c = 5.991 \times 25.00 = 149.78 \text{ kN}$$

$$G_{h3} = G_{v3} \cdot K_h = 149.78 \times 0.20 = 29.96 \text{ kN}$$

杜主

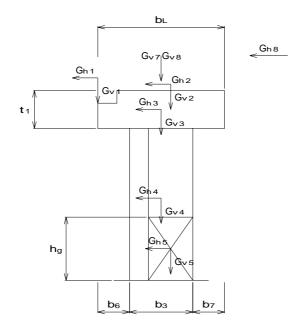
$$G_{v4} = 2 \cdot A_e \cdot c = 2 \times 0.455 \times 25.00 = 22.75 \text{ kN/m}$$

$$G_{h4} = G_{v4} \cdot K_h = 22.75 \times 0.20 = 4.55 \text{ kN/m}$$

ゲート

$$G_{\text{V6}} = \frac{W_{\text{g}}}{h_{\text{g}}} + 2 \cdot w_{\text{to}} = \frac{5.00}{1.500} + 2 \times 3.50 = 10.33 \text{ kN/m}$$

$$G_{h5} = G_{v5} \cdot K_h = 10.33 \times 0.20 = 2.07 \text{ kN/m}$$


載荷重

$$G_{V7} = b_L \cdot b_1 \cdot W_{Ud} = 3.000 \times 3.700 \times 0.00 = 0.00 \text{ kN/m}$$

上屋

$$G_{v8} = W_{ho} = 100.00 \text{ kN}$$

$$G_{h8} = G_{v8} \cdot K_h = 100.00 \times 0.20 = 20.00 \text{ kN}$$

b.曲げモーメント

鉛直力による曲げモーメント

$$G_{xx} = \frac{b_3}{2} = \frac{1.050}{2} = 0.525 \text{ m}$$

Gv4L = 1.675 m (開閉装置載荷位置)

管理橋

$$\begin{array}{lll} M_{v1} &=& G_{v1} \cdot \{ b_L - (G_{xx} + b_7) \} \\ &=& 5.20 \times \{ 3.000 - (0.525 + 0.975) \} \\ &=& 7.80 \ kN \cdot m \end{array}$$

開閉装置

操作台

M_{V3} =
$$G_{V3} \cdot (G_{Xe} + G_X - G_{XX})$$

= $149.78 \times (0.592 + (-0.085) - 0.525)$
= $-2.70 \text{ kN} \cdot \text{m}$

柱

$$\begin{array}{rll} M_{v4} &=& G_{v4} \cdot (h_1 - t_1) \cdot (G_{xe} - G_{xx}) \\ &=& 22.75 \times (3.800 - 0.550) \times (0.592 - 0.525) \\ &=& 4.95 \text{ kN} \cdot \text{m} \end{array}$$

ゲート

$$\begin{array}{rll} M_{V5} &=& G_{V5} \cdot h_g \cdot (G_{xx} + b_6 - G_{V4L}) \\ &=& 10.33 \times 1.500 \times (0.525 + 0.975 - 1.675) \\ &=& -2.71 \ kN \cdot m \end{array}$$

載荷重

上屋

$$M_{V8} = G_{V8} \cdot \{ (G_{xx} + b_6) - \frac{b_L}{2} \} = 100.00 \times \{ (0.525 + 0.975) - \frac{3.000}{2} \}$$

= 0.00 kN·m

$$M_v = (M_{vi}) = 5.94 \text{ kN} \cdot \text{m}$$

水平力による曲げモーメント

管理橋+開閉装置

$$\begin{array}{lll} M_{h1} &=& (G_{h1} \,+\, G_{h2}) \times h_1 \\ &=& (1.04 \,+\, 1.60) \times 3.800 \\ &=& 10.03 \,\, kN \cdot m \end{array}$$

操作台

$$M_{h3} = G_{h3} \cdot (h_1 - \frac{t_1}{2})$$

= 29.96 × (3.800 - $\frac{0.550}{2}$)
= 105.61 kN·m

柱

$$M_{h4} = \frac{G_{h4} \cdot (h_1 - t_1)^2}{2}$$

$$= \frac{4.55 \times (3.800 - 0.550)^2}{2}$$

$$= 24.03 \text{ kN} \cdot \text{m}$$

ゲート

$$M_{hs} = \frac{G_{hs} \cdot h_{g}^{2}}{2}$$

$$= \frac{2.07 \times 1.500^{2}}{2}$$

$$= 2.33 \text{ kN} \cdot \text{m}$$

上屋

$$M_{h8} = G_{h8} \cdot (h_1 + \frac{h_e}{2}) = 20.00 \times (3.800 + \frac{3.000}{2})$$
$$= 106.00 \text{ kN} \cdot \text{m}$$

$$M_h = (M_{hi}) = 248.00 \text{ kN} \cdot \text{m}$$

以上により曲げモーメントは、

$$M = M_V + M_h = 5.94 + 248.00 = 253.94 \text{ kN} \cdot \text{m}$$

c.せん断力

$$S = G_{h1} + G_{h2} + G_{h3} + G_{h4} \cdot (h_1 - t_1) + G_{h5} \cdot h_g + G_{h8}$$

$$= 1.04 + 1.60 + 29.96 + 4.55 \times (3.800 - 0.550) + 2.07 \times 1.500 + 20.00$$

$$= 70.49 \text{ kN}$$

d.軸力

5-2 設計断面力の集計

ケース番号	組合せタイプ	割増し係数
ケース1	常時 + 風荷重	1.25
ケース2	地震時	1.50

ケース番号	柱本数	曲げモーメント	せん断力	軸力
	作工 个女 X	M (kN·m)	S (kN)	N (kN)
ケーフ1	柱2本当たり	244.54	57.86	402.26
ケース1	柱1本当たり	122.27	28.93	201.13
4 —72	柱2本当たり	253.94	70.49	352.41
ケース2	柱1本当たり	126.97	35.25	176.21

5-3 応力度計算

応力度計算については、軸力を考慮する。

5-3-1 柱

a.組合せケース 1

タイプ : 常時 + 風荷重

鉄筋は D16× 2本 の配置とする

曲げモーメント	M	=	122270000	N• mm
せん断力	S	=	28930	N
軸力	N	=	201130	N
部材幅	b	=	350	mm
部材高	h	=	1050	mm
かぶり	d'	=	110	mm
有効高	d	=	940	mm
使用鉄筋量	As	=	397.2	${\rm mm}^2$
圧縮縁から中立軸までの距離	Χ	=	324	mm

 $c = 4.1 \text{ N/mm}^2$

 $s = 116.3 \text{ N/mm}^2$

 $c = \frac{S}{b \cdot d} = \frac{28930}{350 \times 940} = 0.09 \text{ N/mm}^2$

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	116.3	٧	200.0	OK
コンクリート曲げ圧縮応力度	N/mm²	4.1	<	10.0	OK
コンクリートせん断応力度	N/mm²	0.09	<	0.49	OK

b.組合せケース 2 タイプ : 地震時

鉄筋は D16× 2本 の配置とする

曲げモーメント	M	=	126970000 N·mm
せん断力	S	=	35250 N
軸力	N	=	176210 N
部材幅	b	=	350 mm
部材高	h	=	1050 mm
かぶり	d'	=	110 mm
有効高	d	=	940 mm
使用鉄筋量	A s	: =	397.2 mm^2
圧縮縁から中立軸までの距離	Χ	=	285 mm

 $c = 4.4 \text{ N/mm}^2$ $s = 153.2 \text{ N/mm}^2$

$$c = \frac{S}{b \cdot d} = \frac{35250}{350 \times 940} = 0.11 \text{ N/mm}^2$$

項目	単位	実応力度		許容応力度	判定
鉄筋引張応力度	N/mm²	153.2	<	300.0	OK
コンクリート曲げ圧縮応力度	N/mm²	4.4	<	12.0	OK
コンクリートせん断応力度	N/mm²	0.11	<	0.59	OK

5-4 一覧表

5-4-1 組合せケース 1

タイプ : 常時 + 風荷重

項目	記号	単位	端柱
曲げモーメント	М	N• mm	122270000
せん断力	S	N	28930
軸力	N	N	201130
部材幅	b	mm	350
部材高	h	mm	1050
圧縮かぶり	d'	mm	110
有効高	d	mm	940
鉄筋量		mm,本	D16× 2本
	As	mm ²	397.2
中立軸	Х	mm	324
応力度	s	N/mm²	116.3
	С	N/mm^2	4.1
	С	N/mm^2	0.09
許容応力度	sa	N/mm²	200.0
	ca	N/mm^2	10.0
	ca	N/mm^2	0.49

5-4-2 組合せケース 2 タイプ: 地震時

項目	記号	単位	端柱
曲げモーメント	M	N• mm	126970000
せん断力	S	N	35250
軸力	N	N	176210
部材幅	b	mm	350
部材高	h	mm	1050
圧縮かぶり	d'	mm	110
有効高	d	mm	940
鉄筋量		mm,本	D16× 2本
	As	mm ²	397.2
中立軸	Х	mm	285
応力度	s	N/mm²	153.2
	С	N/mm^2	4.4
	С	N/mm^2	0.11
許容応力度	sa	N/mm²	300.0
	ca	N/mm^2	12.0
	ca	N/mm^2	0.59