ライナープレート設計計算書

矩形立坑設計

データファイル: sample3.lps データタイトル: 矩形計算例 作成日 : 2005/10/14

目 次

1	入力データー覧	1
2	設計条件 2-1 立坑寸法 2-2 土質条件 2-3 荷重 2-4 許容応力度 2-5 係数 2-6 水圧	
3	形状寸法	5
4	外力	6
5	外枠の設計5-1 外枠の断面力の検討5-1-1 断面力算定式5-1-2 断面力図5-1-3 応力度照査5-2 限界深度の算出	 3
6	補強材の設計	18 22
7	一覧表	38
8	数量概算表	39

1 入力データ一覧

ファイル名	sample3.lps		
物件名	矩形計算例		
設計条件			
矩形立坑			
立坑短径	В	2.421	(m)
立坑長径	L	5.404	(m)
立坑上面の深度	Ht	0.000	(m)
立坑深度	Н	4.000	(m)
ヤング係数	E	2.0×10 ⁵	(N/mm^2)
ライナープレートの記	許容応力度 』	180.0	(N/mm^2)
鋼材の許容応力度	Ha	210.0	(N/mm^2)
土圧強度が一定となる	る深度	15.000	(m)

土質条件

上載荷重

	深度	静止土圧係数	単位体積重量		
No	/木/文	月十111111111111111111111111111111111111	湿潤	水中	
INO	K _s	Ks	t	,	
	(m)		(kN/m³)	(kN/m³)	
1	0.000 ~ 20.000	0.500	20.000	10.000	

W

 (kN/m^2)

10.000

土圧強度

_				
		深度	土圧	強度
	No		Pa (k	N/m²)
		(m)	上面	下面
Γ	1	0.000 ~ 15.000	5.000	155.000
Γ	2	15.000 ~ 20.000	155.000	155.000

外枠使用部材

	深度 ライナー			補強材					
No			板厚		呼称				
	(m)	(mm)							
1	1.000	1	2.70	2	H形鋼(生材)	H - 125	1.0		
2	2.000	1	2.70	3	H形鋼(生材)	H - 150	1.0		
3	3.000	1	2.70	4	H形鋼(生材)	H - 175	1.0		
4	4.000	1	1 2.70		H形鋼(生材)	H - 200	1.0		

補強材継手部

	長さ方向	幅方向
No	Χi	Уi
	(mm)	(mm)
1	818.0	1210.5
2	818.0	1210.5
3	818.0	
4	818.0	

継手板使用部材

	深度	継号	手板	ボルト孔径	本数	有効断面積		
No	/不/又	幅 板厚		ソハトロコロエ	44-88	· FIXJI型IIII11頁		
INO		Bf	t _f	b₀		Ab		
	(m)	(mm)	(mm)	(mm)	(本)	(mm²/本)		
1	1.000	125.0	12.0	22.0	4	245.0		
2	2.000	150.0	12.0	22.0	4	245.0		
3	3.000	175.0	12.0	22.0	4	245.0		
4	4.000	200.0	12.0	22.0	6	245.0		

ライナープレート部材データ

	板厚	断面積	断面係数	断面二次モーメント	断面二次半径
No		Α	Z	I	i
	(mm)	(cm ²)	(cm ³)	(Cm ⁴)	(cm)
1	2.7	39.760	46.000	141.000	1.880
2	3.2	47.120	54.400	168.000	1.890
3	4.0	58.860	67.400	210.000	1.890
4	4.5	66.220	75.800	238.000	1.900
5	5.3	77.900	88.800	280.000	1.900
6	6.0	88.200	100.000	320.000	1.900
7	7.0	102.900	116.000	376.000	1.910

鋼材データ

No	鋼材名	Н	В	t ₁	+.	断面積	断面係数	断面二次 モーメント	断面二	次半径
INO	到771	"		L 1	t ₂	Α	Z	I	ix	iу
						(cm²)	(cm3)	(cm ⁴)	(cm)	(cm)
1	H形鋼(生材)	100	100	6.0	8.0	21.590	75.600	378.000	4.180	2.490
2	H形鋼(生材)	125	125	6.5	9.0	30.000	134.000	839.000	5.290	3.130
3	H形鋼(生材)	150	150	7.0	10.0	39.650	216.000	1620.000	6.400	3.770
4	H形鋼(生材)	175	175	7.5	11.0	51.420	331.000	2900.000	7.500	4.370
5	H形鋼(生材)	200	200	8.0	12.0	63.530	472.000	4720.000	8.620	5.020
6	H形鋼(生材)	250	250	9.0	14.0	91.430	860.000	10700.000	10.800	6.320
7	H形鋼(生材)	300	300	10.0	15.0	118.400	1350.000	20200.000	13.100	7.550
8	H形鋼(生材)	350	350	12.0	19.0	171.900	2280.000	39800.000	15.200	8.890
9	H形鋼(生材)	400	400	13.0	21.0	218.700	3330.000	66600.000	17.500	10.100
10	H形鋼(リース材)	200	200	8.0	12.0	51.530	366.000	3660.000	8.430	4.220
11	H形鋼(リース材)	250	250	9.0	14.0	78.180	708.000	8850.000	10.600	6.050
12	H形鋼(リース材)	300	300	10.0	15.0	104.800	1150.000	17300.000	12.900	7.510
13	H形鋼(リース材)	350	350	12.0	19.0	154.900	2000.000	35000.000	15.100	8.990
14	H形鋼(リース材)	400	400	13.0	21.0	197.700	2950.000	59000.000	17.300	10.100

2 設計条件

立坑形式:矩形立坑

2-1 立坑寸法

 $2.421 \text{ m} (B) \times 5.404 \text{ m} (L) \times 4.000 \text{ m} (H)$

立坑上面の深度 $H_t = 0.000$ (m)

2-2 土質条件

土圧係数静止土圧係数 K s を用いる。土圧強度15.000 m以深で一定とする。

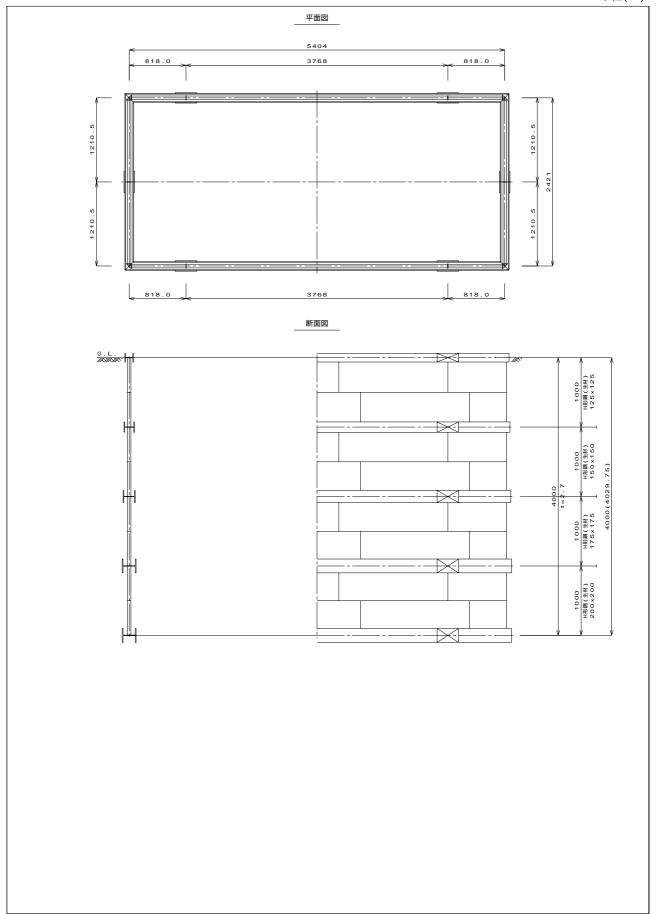
	深度	静止土圧係数	単位体	積重量
No	/木/支	月尹11117年1175女父	湿潤	水中
INO		Ks	t	,
	(m)		(kN/m³)	(kN/m³)
1	0.000 ~ 20.000	0.500	20.000	10.000

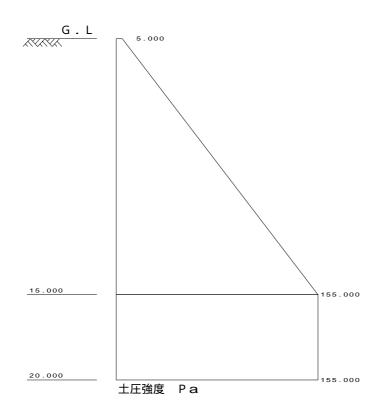
2-3 荷重

上載荷重 W = 10.000 (kN/m²)

2-4 許容応力度

ライナープレートLa = 180(N/mm²)鋼材Ha = 210(N/mm²)継手ボルトa = 300(N/mm²)


2-5 係数


ヤング係数 $E = 2.0 \times 10^5$ (N/mm^2)

2-6 水圧

水圧は考慮しない。

単位(mm)

4-1 土圧

	深度	土圧強度		
No		Pa (k	N/m^2)	
	(m)	上面	下面	
1	0.000 ~ 15.000	5.000	155.000	
2	15.000 ~ 20.000	155.000	155.000	

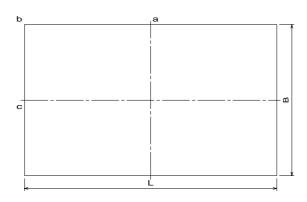
$$P_a = K_s (h + W)$$

Ks : 静止土圧係数

: 土の単位体積重量 (kN/m³)

h : 層厚 (m) W : 上載荷重 (kN/m²)

但し、Pa 0


4-2 設計区間の最大側圧

	深度	側圧
No		рh
	(m)	(kN/m²)
1	0.000 ~ 1.000	15.000
2	1.000 ~ 2.000	25.000
3	2.000 ~ 3.000	35.000
4	3.000 ~ 4.000	45.000

5 外枠の設計

5-1 外枠の断面力の検討

外枠は、矩形のラーメン構造として設計する。 ラーメンの基本寸法を下図のように符号する。

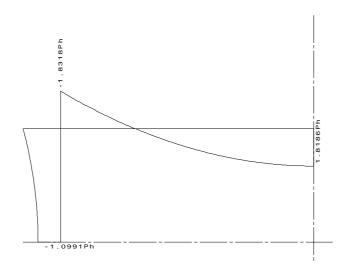
5-1-1 断面力算定式

 $N_{b-c} = \frac{1}{2} p_h \cdot L = \frac{1}{2} \times 5.404 \times p_h = 2.7020 \times p_h$

 M : 曲げモーメント
 (kN・m/m)

 N : 軸力
 (kN/m)

 ph : 側圧
 (kN/m²)


 L : 立坑長径
 5.404
 (m)

2.421

(m)

5-1-2 断面力図

B : 立坑短径

5-1-3 応力度照査

1. 深度 0.000 m ~ 1.000 m ($p_{\text{\tiny h}}\!=\!15.000$ kN/m²)

 M_a = 1.8186 x 15.000 = 27.279 (kN·m/m) M_b = -1.8318 x 15.000 = -27.477 (kN·m/m)

 M_c = -1.0991 x 15.000 = -16.487 (kN·m/m) N_{b-a} = 1.2105 x 15.000 = 18.158 (kN/m)

 $N_{b-c} = 2.7020 \times 15.000 = 40.530 \text{ (kN/m)}$

従って最大断面力は、下記のようになる。

曲げモーメ	シト(短辺)	M _{max} =	27.47672	$(kN \cdot m/m)$
	(長辺)	M _{max} =	27.47672	$(kN\cdot m/m)$
軸力	(短辺)	N _{max} =	40.530	(kN/m)

(長辺) $N_{max} = 18.158$ (kN/m)

A) 短辺

曲げモーメントはライナープレートと補強材の断面二次モーメントの日で、また軸力は 各々の断面積の比で分担するものとする。

使用部材	断面積		断面二次モーメント		断面係数
	A × 10 ³	а	I ×10 ⁶	i	Z ×10⁴
	(mm²/m)		(mm ⁴ /m)		(mm³/m)
LP t=2.7 mm	3.976	0.56995	1.410	0.14388	4.600
H-125 @1.0 m	3.000	0.43005	8.390	0.85612	13.400

a:軸力の分担率

: 曲げモーメントの分担率

ライナープレートの許容圧縮応力度 124は

$$1_k = 0.5 \times B = 0.5 \times 2.4210 \times 10^3 = 1210.50 \text{ (mm)}$$
 $H_k = \frac{1_k}{1_L} = \frac{1210.50}{18.80} = 64.3883$

18 < Hk 92また仮設構造であるから5.0割増とし

LNa = 1.50 × { 140-0.82 (
$$H_{k}$$
-18) } × $\frac{1.20}{1.40}$ = 131.1 (N/mm^2)

$$\frac{\text{aL} \cdot \text{N}}{\text{A L}^{\bullet} \quad \text{LNa}} + \frac{\text{iL} \cdot \text{M max}}{\text{Z L}^{\bullet} \quad \text{La}} = \frac{0.56995 \times 40.530 \times 10^{3}}{3.976 \times 10^{3} \times 131.1} + \frac{0.14388 \times 27.47672 \times 10^{6}}{4.600 \times 10^{4} \times 180.0}$$
$$= 0.522 \quad 1.0$$

1㎏:有効座屈長

Hk :細長比

補強材の許容圧縮応力度 ѩは

$$H_k = \frac{l_k}{i_H} = \frac{1210.50}{52.90} = 22.8828$$

18 < Hk 92また仮設構造であるから5.0割増とし

$$_{HNa} = 1.50 \times \{140-0.82(H_{k}-18)\} = 204.0 (N/mm^{2})$$

$$\frac{\text{aH} \cdot \text{N}}{\text{A} \cdot \text{H} \cdot \text{N}} + \frac{\text{iH} \cdot \text{M}_{\text{max}}}{\text{Z} \cdot \text{H} \cdot \text{Ha}} = \frac{0.43005 \times 40.530 \times 10^{3}}{3.000 \times 10^{3} \times 204.0} + \frac{0.85612 \times 27.47672 \times 10^{6}}{13.400 \times 10^{4} \times 210.0} = 0.864 + 1.0$$

B) 長辺

曲げモーメントはライナープレートと補強材の断面二次モーメントの日で、また軸力は 各々の断面積の比で分担するものとする。

使用部材	断面積		断面二次モーメント		断面係数
	A × 10 ³	а	$I \times 10^6$	i	Z ×10⁴
	(mm²/m)		(mm ⁴ /m)		(mm³/m)
LP t=2.7 mm	3.976	0.56995	1.410	0.14388	4.600
H-125 @1.0 m	3.000	0.43005	8.390	0.85612	13.400

a:軸力の分担率

: 曲げモーメントの分担率

ライナープレートの許容圧縮応力度 いは

$$l_k = 0.5 \times L = 0.5 \times 5.4040 \times 10^3 = 2702.00 \text{ (mm)}$$

 $H_k = \frac{l_k}{i_L} = \frac{2702.00}{18.80} = 143.7234$

Hk > 92また仮設構造であるから5.0割増とし

1ょ:有効座屈長

H㎏:細長比

補強材の許容圧縮応力度 っぱ

$$H_k = \frac{1_k}{i_H} = \frac{2702.00}{52.90} = 51.0775$$

18 < Hk 92また仮設構造であるから5.0割増とし

$$_{HNa} = 1.50 \times \{140-0.82(H_{k}-18)\} = 169.3 (N/mm^{2})$$

 i н : 補強材の断面二次半径
 52.90 (mm)

 ha : 補強材の許容曲げ応力度
 210 (N/mm²)

2. 深度 1.000 m ~ 2.000 m (p_h=25.000 kN/m²)

 $M_c = -1.0991 \times 25.000 = -27.478 \text{ (kN·m/m)}$

 $N_{\text{b-a}} = 1.2105 \times 25.000 = 30.263 \text{ (kN/m)}$ $N_{\text{b-c}} = 2.7020 \times 25.000 = 67.550 \text{ (kN/m)}$

従って最大断面力は、下記のようになる。

曲げモーメント(短辺) M_{max} = 45.79453 (kN·m/m)

(長辺) M_{max} = 45.79453 (kN·m/m)

軸力 (短辺) N_{max} = 67.550 (kN/m)

(長辺) $N_{max} = 30.263$ (kN/m)

A) 短辺

曲げモーメントはライナープレートと補強材の断面二次モーメントの日で、また軸力は 各々の断面積の比で分担するものとする。

使用部材	断面積		断面二次モーメント		断面係数
	A × 10 ³	а	I × 10 ⁶	i	Z ×10⁴
	(mm²/m)		(mm ⁴ /m)		(mm³/m)
LP t=2.7 mm	3.976	0.50069	1.410	0.08007	4.600
H-150 @1.0 m	3.965	0.49931	16.200	0.91993	21.600

a:軸力の分担率

: 曲げモーメントの分担率

ライナープレートの許容圧縮応力度 以は

$$1_k = 0.5 \times B = 0.5 \times 2.4210 \times 10^3 = 1210.50 \text{ (mm)}$$

$$H_k = \frac{1_k}{i_L} = \frac{1210.50}{18.80} = 64.3883$$

18 < Hk 92また仮設構造であるから5.0割増とし

LNa = 1.50 × { 140-0.82(Hk-18) } ×
$$\frac{1.20}{1.40}$$
 = 131.1 (N/mm²)

$$\frac{\text{aL} \cdot \text{N}}{\text{A L}^{\bullet} \quad \text{LNa}} + \frac{\text{iL} \cdot \text{M}_{\text{max}}}{\text{Z L}^{\bullet} \quad \text{La}} = \frac{0.50069 \times 67.550 \times 10^{3}}{3.976 \times 10^{3} \times 131.1} + \frac{0.08007 \times 45.79453 \times 10^{6}}{4.600 \times 10^{4} \times 180.0} = 0.508 \quad 1.0$$

1k:有効座屈長

H㎏ : 細長比

i:: ライナープレートの断面二次半径 18.80 (mm)

 (N/mm^2)

u: ライナープレートの許容曲げ応力度 180

補強材の許容圧縮応力度 ѩは

$$H_k = \frac{l_k}{i_H} = \frac{1210.50}{64.00} = 18.9141$$

18 < Hk 92また仮設構造であるから5.0割増とし

$$_{HNa} = 1.50 \times \{140-0.82(H_{k}-18)\} = 208.9 (N/mm^{2})$$

$$\frac{\text{aH}^{\bullet} \text{ N}}{\text{A H}^{\bullet} \text{ HNa}} + \frac{\text{iH}^{\bullet} \text{ M}_{\text{max}}}{\text{Z H}^{\bullet} \text{ Ha}} = \frac{0.49931 \times 67.550 \times 10^{3}}{3.965 \times 10^{3} \times 208.9} + \frac{0.91993 \times 45.79453 \times 10^{6}}{21.600 \times 10^{4} \times 210.0} = 0.969 \quad 1.0$$

 i + :補強材の断面二次半径
 64.00 (mm)

塩:補強材の許容曲げ応力度 210 (N/mm²)

B) 長辺

曲げモーメントはライナープレートと補強材の断面二次モーメントの日で、また軸力は 各々の断面積の比で分担するものとする。

使用部材	断面積		断面二次モーメント		断面係数
	A × 10 ³	а	$I \times 10^6$	i	Z ×10⁴
	(mm²/m)		(mm ⁴ /m)		(mm³/m)
LP t=2.7 mm	3.976	0.50069	1.410	0.08007	4.600
H-150 @1.0 m	3.965	0.49931	16.200	0.91993	21.600

a:軸力の分担率

: 曲げモーメントの分担率

ライナープレートの許容圧縮応力度 いは

$$l_k = 0.5 \times L = 0.5 \times 5.4040 \times 10^3 = 2702.00 \text{ (mm)}$$

 $H_k = \frac{l_k}{i_L} = \frac{2702.00}{18.80} = 143.7234$

Hk > 92また仮設構造であるから5.0割増とし

1㎏: 有効座屈長

H㎏:細長比

補強材の許容圧縮応力度 っぱ

$$H_k = \frac{1_k}{i_H} = \frac{2702.00}{64.00} = 42.2188$$

18 < Hk 92また仮設構造であるから5.0割増とし

$$_{HNa} = 1.50 \times \{140-0.82(H_{k}-18)\} = 180.2 (N/mm^{2})$$

$$\frac{\text{aH}^{\bullet} \text{ N}}{\text{A H}^{\bullet} \text{ HNa}} + \frac{\text{iH}^{\bullet} \text{ M}_{\text{max}}}{\text{Z H}^{\bullet} \text{ Ha}} = \frac{0.49931 \times 30.263 \times 10^{3}}{3.965 \times 10^{3} \times 180.2} + \frac{0.91993 \times 45.79453 \times 10^{6}}{21.600 \times 10^{4} \times 210.0} = 0.950 \quad 1.0$$

i н : 補強材の断面二次半径64.00(mm)ha : 補強材の許容曲げ応力度210(N/mm²)

3. 深度 2.000 m ~ 3.000 m (p_h=35.000 kN/m²)

 $N_{b\sim a} = 1.2105 \times 35.000 = 42.368 \text{ (kN/m)}$

 $N_{b-c} = 2.7020 \times 35.000 = 94.570 \text{ (kN/m)}$

従って最大断面力は、下記のようになる。

曲げモーメ	ント(短辺)	$M_{max} = 64.11$	234 (kN·m/m)
	(長辺)	$M_{max} = 64.11$	234 (kN·m/m)
軸力	(短辺)	$N_{max} = 94.57$	0 (kN/m)

| 知力 (短辺) Nmax = 94.570 (kN/m) (長辺) Nmax = 42.368 (kN/m)

A) 短辺

曲げモーメントはライナープレートと補強材の断面二次モーメントの日で、また軸力は 各々の断面積の比で分担するものとする。

		=			
使用部材	断面積		断面二次モーメント		断面係数
	A × 10 ³	а	$I \times 10^{6}$	i	Z ×10⁴
	(mm²/m)		(mm ⁴ /m)		(mm³/m)
LP t=2.7 mm	3.976	0.43606	1.410	0.04637	4.600
H-175 @1.0 m	5.142	0.56394	29.000	0.95363	33.100

a:軸力の分担率

: 曲げモーメントの分担率

ライナープレートの許容圧縮応力度 以は

$$1_k = 0.5 \times B = 0.5 \times 2.4210 \times 10^3 = 1210.50 \text{ (mm)}$$
 $H_k = \frac{1_k}{i_L} = \frac{1210.50}{18.80} = 64.3883$

18 < Hk 92また仮設構造であるから5.0割増とし

LNa = 1.50 × { 140-0.82(Hk-18) } ×
$$\frac{1.20}{1.40}$$
 = 131.1 (N/mm²)

$$\frac{\text{al} \cdot \text{N}}{\text{A} \cdot \text{L}^{\bullet} \quad \text{LNa}} + \frac{\text{i} \cdot \text{L}^{\bullet} \quad \text{M}_{\text{max}}}{\text{Z} \cdot \text{L}^{\bullet} \quad \text{La}} = \frac{0.43606 \times 94.570 \times 10^{3}}{3.976 \times 10^{3} \times 131.1} + \frac{0.04637 \times 64.11234 \times 10^{6}}{4.600 \times 10^{4} \times 180.0} = 0.438 \quad 1.0$$

1㎏:有効座屈長

H㎏ : 細長比

補強材の許容圧縮応力度 №は

$$H_k = \frac{l_k}{i_H} = \frac{1210.50}{75.00} = 16.1400$$

Hk 18また仮設構造であるから5.0割増とし

 $_{HNa} = 210.0 (N/mm^2)$

$$\frac{\text{aH}^{\bullet} \text{ N}}{\text{A H}^{\bullet} \text{ HNa}} + \frac{\text{iH}^{\bullet} \text{ M}_{\text{max}}}{Z \text{ H}^{\bullet} \text{ Ha}} = \frac{0.56394 \times 94.570 \times 10^{3}}{5.142 \times 10^{3} \times 210.0} + \frac{0.95363 \times 64.11234 \times 10^{6}}{33.100 \times 10^{4} \times 210.0} = 0.929 \quad 1.0$$

 i H : 補強材の断面二次半径
 75.00 (mm)

 a : 補強材の許容曲げ応力度
 210 (N/mm²)

曲げモーメントはライナープレートと補強材の断面二次モーメントの日で、また軸力は 各々の断面積の比で分担するものとする。

使用部材	断面積		断面二次モーメント		断面係数
	A × 10 ³	а	$I \times 10^6$	i	Z ×10⁴
	(mm²/m)		(mm ⁴ /m)		(mm³/m)
LP t=2.7 mm	3.976	0.43606	1.410	0.04637	4.600
H-175 @1.0 m	5.142	0.56394	29.000	0.95363	33.100

a:軸力の分担率

: 曲げモーメントの分担率

ライナープレートの許容圧縮応力度 いは

$$l_k = 0.5 \times L = 0.5 \times 5.4040 \times 10^3 = 2702.00 \text{ (mm)}$$

 $H_k = \frac{l_k}{i_L} = \frac{2702.00}{18.80} = 143.7234$

Hk > 92また仮設構造であるから5.0割増とし

$$_{LNa} = 1.50 \times \frac{1.2 \times 10^6}{6700 + H_{\kappa^2}} \times \frac{1.20}{1.40} = 56.4 \text{ (N/mm}^2)$$

$$\frac{_{\text{aL}^{\bullet}} \text{ N}}{\text{A}_{\text{L}^{\bullet}} \text{ LNa}} + \frac{_{\text{iL}^{\bullet}} \text{ M}_{\text{max}}}{Z_{\text{L}^{\bullet}} \text{ La}} = \frac{0.43606 \times 42.368 \times 10^{3}}{3.976 \times 10^{3} \times 56.4} + \frac{0.04637 \times 64.11234 \times 10^{6}}{4.600 \times 10^{4} \times 180.0}$$

$$= 0.441 \quad 1.0$$

1ょ:有効座屈長

H㎏:細長比

は、ライナープレートの許容曲げ応力度

補強材の許容圧縮応力度 っぱ

$$H_k = \frac{1_k}{i_H} = \frac{2702.00}{75.00} = 36.0267$$

18 < Hk 92また仮設構造であるから5.0割増とし

$$_{HNa} = 1.50 \times \{140-0.82(H_{k}-18)\} = 187.8 (N/mm^{2})$$

$$\frac{_{\text{aH}^{\bullet}} \text{ N}}{_{\text{A} \text{ H}^{\bullet}} _{\text{HNa}}} + \frac{_{\text{iH}^{\bullet}} \text{ M}_{\text{max}}}{_{\text{Z} \text{ H}^{\bullet}} _{\text{Ha}}} = \frac{0.56394 \times 42.368 \times 10^{3}}{_{5.142 \times 10^{3}} \times 187.8} + \frac{0.95363 \times 64.11234 \times 10^{6}}{_{33.100 \times 10^{4}} \times 210.0} = 0.904 \quad 1.0$$

4. 深度 $3.000 \text{ m} \sim 4.000 \text{ m}$ ($p_h = 45.000 \text{ kN/m}^2$)

 $N_{b-a} = 1.2105 \times 45.000 = 54.473 \text{ (kN/m)}$

 $N_{b-c} = 2.7020 \times 45.000 = 121.590 (kN/m)$

従って最大断面力は、下記のようになる。

曲げモーメント(短辺)	$M_{max} = 82.43015$	$(kN \cdot m/m)$
(長辺)	$M_{max} = 82.43015$	(kN• m/m)

軸力 (短辺) N_{max} = 121.590 (kN/m)

(長辺) $N_{max} = 54.473$ (kN/m)

A) 短辺

曲げモーメントはライナープレートと補強材の断面二次モーメントの日で、また軸力は 各々の断面積の比で分担するものとする。

使用部材	断面積		断面二次モーメント		断面係数
	A × 10 ³	а	I × 10 ⁶	i	Z ×10⁴
	(mm²/m)		(mm ⁴ /m)		(mm³/m)
LP t=2.7 mm	3.976	0.38494	1.410	0.02901	4.600
H-200 @1.0 m	6.353	0.61506	47.200	0.97099	47.200

a:軸力の分担率

: 曲げモーメントの分担率

ライナープレートの許容圧縮応力度 以は

$$1_{\text{k}} = 0.5 \times B = 0.5 \times 2.4210 \times 10^{3} = 1210.50 \text{ (mm)}$$

$$H_k = \frac{1_k}{i_L} = \frac{1210.50}{18.80} = 64.3883$$

18 < Hk 92また仮設構造であるから5.0割増とし

LNa = 1.50 × { 140-0.82 (
$$H_k$$
-18) } × $\frac{1.20}{1.40}$ = 131.1 (N/mm^2)

$$\frac{\text{al} \cdot \text{N}}{\text{A L}^{\bullet} \quad \text{LNa}} + \frac{\text{iL} \cdot \text{M max}}{\text{Z L}^{\bullet} \quad \text{La}} = \frac{0.38494 \times 121.590 \times 10^{3}}{3.976 \times 10^{3} \times 131.1} + \frac{0.02901 \times 82.43015 \times 10^{6}}{4.600 \times 10^{4} \times 180.0}$$

$$= 0.379 \quad 1.0$$

1㎏:有効座屈長

H㎏ : 細長比

補強材の許容圧縮応力度 №は

$$H_k = \frac{l_k}{i_H} = \frac{1210.50}{86.20} = 14.0429$$

Hk 18また仮設構造であるから5.0割増とし

 $_{HNa} = 210.0 (N/mm^2)$

$$\frac{\text{aH}^{\bullet} \text{ N}}{\text{A H}^{\bullet} \text{ HNa}} + \frac{\text{iH}^{\bullet} \text{ M}_{\text{max}}}{\text{Z H}^{\bullet} \text{ Ha}} = \frac{0.61506 \times 121.590 \times 10^{3}}{6.353 \times 10^{3} \times 210.0} + \frac{0.97099 \times 82.43015 \times 10^{6}}{47.200 \times 10^{4} \times 210.0} = 0.864 \quad 1.0$$

曲げモーメントはライナープレートと補強材の断面二次モーメントの日で、また軸力は 各々の断面積の比で分担するものとする。

使用部材	断面積		断面二次モーメント		断面係数
	A × 10 ³	а	I × 10 ⁶	i	Z ×10⁴
	(mm²/m)		(mm ⁴ /m)		(mm³/m)
LP t=2.7 mm	3.976	0.38494	1.410	0.02901	4.600
H-200 @1.0 m	6.353	0.61506	47.200	0.97099	47.200

a:軸力の分担率

: 曲げモーメントの分担率

ライナープレートの許容圧縮応力度 いは

$$1_k = 0.5 \times L = 0.5 \times 5.4040 \times 10^3 = 2702.00 \text{ (mm)}$$

$$H_k = \frac{1_k}{i_L} = \frac{2702.00}{18.80} = 143.7234$$

Hk > 92また仮設構造であるから5.0割増とし

$$_{LNa} = 1.50 \times \frac{1.2 \times 10^6}{6700 + H_{k^2}} \times \frac{1.20}{1.40} = 56.4 \text{ (N/mm}^2)$$

$$\frac{_{\text{aL}^{\bullet}} \text{ N}}{\text{A}_{\text{L}^{\bullet}} \text{ LNa}} + \frac{_{\text{iL}^{\bullet}} \text{ M}_{\text{max}}}{Z_{\text{L}^{\bullet}} \text{ La}} = \frac{0.38494 \times 54.473 \times 10^{3}}{3.976 \times 10^{3} \times 56.4} + \frac{0.02901 \times 82.43015 \times 10^{6}}{4.600 \times 10^{4} \times 180.0} = 0.382 \quad 1.0$$

1ょ:有効座屈長

H㎏:細長比

補強材の許容圧縮応力度 っぱ

$$H_k = \frac{1_k}{i_H} = \frac{2702.00}{86.20} = 31.3457$$

18 < Hk 92また仮設構造であるから5.0割増とし

$$_{HNa} = 1.50 \times \{140-0.82(H_{k}-18)\} = 193.6 (N/mm^{2})$$

$$\frac{\text{aH} \cdot \text{N}}{\text{A} \cdot \text{HNa}} + \frac{\text{iH} \cdot \text{M}_{\text{max}}}{\text{Z} \cdot \text{H}^{2}} = \frac{0.61506 \times 54.473 \times 10^{3}}{6.353 \times 10^{3} \times 193.6} + \frac{0.97099 \times 82.43015 \times 10^{6}}{47.200 \times 10^{4} \times 210.0} = 0.835 \quad 1.0$$

5-2 限界深度の算出

限界深度表

	板厚		補強材		側圧	許容外圧
No	似以子	鋼材名・呼称	間隔	限界深度		
	(mm)		(m)	(m)	(kN/m²)	(kN/m²)
1	2.7			0.000	10.000	4.287
2	3.2			0.000	10.000	5.072
3	4.0			0.000	10.000	6.287
4	4.5			0.000	10.000	7.073
5	5.3			0.000	10.000	8.288
6	6.0			0.000	10.000	9.336

6 補強材の設計

6-1 たわみ量の照査

たわみ量の計算

補強リングに生じるたわみ量は次式で与えられる。より大きなたわみが生じる長径側について計算する。

$$_{H} = - \frac{_{iH^{\bullet} \text{ M} \text{ max}^{\bullet} \text{ L}^{2}}}{8 \cdot \text{ E} \cdot \frac{\text{I}_{H}}{1_{H}}} + \frac{5 \cdot \text{ p}_{h^{\bullet} \text{ L}^{4}}}{384 \cdot \text{ E} \cdot \frac{\text{I}_{H}}{1_{H}}}$$

$$= - \frac{0.85612 \times 27.48 \times 10^{3} \times (5404.0)^{2}}{8 \times 2.00 \times 10^{5} \times \frac{0.839 \times 10^{7}}{1.0 \times 10^{3}}} + \frac{5 \times 15.000 \times 10^{-3} \times (5404.0)^{4}}{384 \times 2.00 \times 10^{5} \times \frac{0.839 \times 10^{7}}{1.0 \times 10^{3}}}$$

= 48.09 (mm)

: 補強材の分担比

 E : 補強リングの弾性係数
 (N/mm²)

 ph : ライナープレートに作用する土圧強度
 (N/mm²)

 I н : 補強リングの断面二次モーメント
 (mm²)

 L : 長辺の長さ
 (mm)

 1 н : 補強リングの間隔
 (mm)

ここで、許容たわみ量は、

$$_{a} = \frac{L}{200} = \frac{5404.0}{200} = 27.02 \text{ (mm)}$$

従ってたわみに対する照査は以下のとおりである。

$$H = 48.09 > 27.02 \text{ (mm)}$$

よって切梁等の支保部材の検討が必要となる。

$$H = -\frac{iH \cdot M_{\text{max}} \cdot L^{2}}{8 \cdot E \cdot \frac{I}{1} \cdot H} + \frac{5 \cdot p \cdot h \cdot L^{4}}{384 \cdot E \cdot \frac{I}{1} \cdot H}$$

$$= -\frac{0.91993 \times 45.79 \times 10^{3} \times (5404.0)^{2}}{8 \times 2.00 \times 10^{5} \times \frac{1.620 \times 10^{7}}{1.0 \times 10^{3}}} + \frac{5 \times 25.000 \times 10^{-3} \times (5404.0)^{4}}{384 \times 2.00 \times 10^{5} \times \frac{1.620 \times 10^{7}}{1.0 \times 10^{3}}}$$

= 38.22 (mm)

н:補強リングのたわみ量 (mm)

: 補強材の分担比

E:補強リングの弾性係数 (N/mm²)

p_n: ライナープレートに作用する土圧強度 (N/mm²)

 I_{H} :補強リングの断面二次モーメント (mm^4)

L : 長辺の長さ (mm)

1_H:補強リングの間隔 (mm)

ここで、許容たわみ量は、

$$_{a} = \frac{L}{200} = \frac{5404.0}{200} = 27.02 \text{ (mm)}$$

従ってたわみに対する照査は以下のとおりである。

$$_{H} = 38.22 > 27.02 \text{ (mm)}$$

よって切梁等の支保部材の検討が必要となる。

$$H = -\frac{iH \cdot M_{\text{max}} \cdot L^{2}}{8 \cdot E \cdot \frac{I}{1} \cdot H} + \frac{5 \cdot p \cdot h \cdot L^{4}}{384 \cdot E \cdot \frac{I}{1} \cdot H}$$

$$= - \frac{0.95363 \times 64.11 \times 10^{3} \times (5404.0)^{2}}{8 \times 2.00 \times 10^{5} \times \frac{2.900 \times 10^{7}}{1.0 \times 10^{3}}} + \frac{5 \times 35.000 \times 10^{-3} \times (5404.0)^{4}}{384 \times 2.00 \times 10^{5} \times \frac{2.900 \times 10^{7}}{1.0 \times 10^{3}}}$$

 $= 28.53 \, (mm)$

н:補強リングのたわみ量 (mm)

: 補強材の分担比

E :補強リングの弾性係数 (N/mm²)

p_n: ライナープレートに作用する土圧強度 (N/mm²)

 I_{H} :補強リングの断面二次モーメント (mm^4)

L : 長辺の長さ (mm)

1_H:補強リングの間隔 (mm)

ここで、許容たわみ量は、

$$_{a} = \frac{L}{200} = \frac{5404.0}{200} = 27.02 \text{ (mm)}$$

従ってたわみに対する照査は以下のとおりである。

$$_{H} = 28.53 > 27.02 \text{ (mm)}$$

よって切梁等の支保部材の検討が必要となる。

$$H = -\frac{iH \cdot M_{\text{max}} \cdot L^{2}}{8 \cdot E \cdot \frac{I}{1} \cdot H} + \frac{5 \cdot p \cdot h \cdot L^{4}}{384 \cdot E \cdot \frac{I}{1} \cdot H}$$

$$= -\frac{0.97099 \times 82.43 \times 10^{3} \times (5404.0)^{2}}{8 \times 2.00 \times 10^{5} \times \frac{4.720 \times 10^{7}}{1.0 \times 10^{3}}} + \frac{5 \times 45.000 \times 10^{-3} \times (5404.0)^{4}}{384 \times 2.00 \times 10^{5} \times \frac{4.720 \times 10^{7}}{1.0 \times 10^{3}}}$$

= 21.98 (mm)

#:補強リングのたわみ量 (mm)

:: 補強材の分担比

E:補強リングの弾性係数 (N/mm²)

p_n: ライナープレートに作用する土圧強度 (N/mm²)

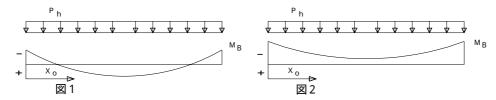
I → :補強リングの断面二次モーメント (mm⁴)

L : 長辺の長さ (mm)

1_H:補強リングの間隔 (mm)

ここで、許容たわみ量は、

$$_{a} = \frac{L}{200} = \frac{5404.0}{200} = 27.02 \text{ (mm)}$$


従ってたわみに対する照査は以下のとおりである。

$$_{H} = 21.98 27.02 (mm)$$

6-2 継手部

1. 深度 0.000 m ~ 1.000 m (p_h=15.000 kN/m²)

(1) 継手位置

長辺A-B

曲げモーメントは図1に示すようになることから、曲げモーメントが0となる位置付近に継手を設けるものである。曲げモーメントが0となる位置は次式により、

$$|M_B| - \frac{p_B \cdot L}{2} \times + \frac{p_B}{2} \times^2 = 0 \text{ LI}$$

27.48 - $\frac{15.000 \times 5.404}{2} \times + \frac{15.000}{2} \times^2 = 0$

 x_0 = 794.8 (mm) となるが、これにライナープレートのボルト孔位置を考慮して、 継手位置を定める。まずボルト孔のピッチ数は、

$$n_0 = \frac{(x_0 - 33)}{157} = \frac{(794.8 - 33)}{157} = 4.853$$

 $n_0 = 5.0$ とすると、
 $x_0 = (n_0 \times 0.157) + 0.033 = (5.0 \times 157) + 33 = 818.0 \text{ (mm)}$

継手位置の採用値

	長さ方向	曲げモーメント		
i	Χi	Mi		
1	(mm)	(kN•m/m)		
1	818.0	0.658		
2	818.0	0.658		
3	818.0	0.658		
4	818.0	0.658		

短辺B-C

曲げモーメントは図2に示すようになることから、継手を設ける位置は曲げモーメントが 最小となるスパン中央となる。すなわち、

$$x_{\circ} = \frac{2421.0}{2} = 1210.5 \text{ (mm)}$$

継手位置の採用値

	長さ方向	曲げモーメント
i	Χi	Mi
	(mm)	(kN•m/m)
1	1210.5	-16.487
2	1210.5	-16.487

 M」:最大曲げモーメント
 (kN·m/m)

 N」:軸力
 (kN/m)

 1:補強材設置間隔
 1.0 (m)

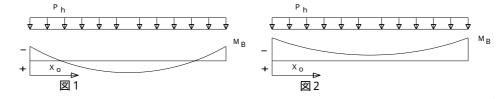
 x。:継手位置(計算値)
 (mm)

 x::継手位置(採用値)
 (mm)

(2) 継手ボルトの検討

長辺では

短辺では


$$P_J = \frac{N_J}{2} + \frac{M_J}{h} = \frac{17.430}{2} + \frac{14.115}{0.125} = 121.633 \text{ (kN)}$$
 従って継手ボルトの発生せん断応力度 は
$$= \frac{P_J}{n \cdot A_b} = \frac{121.633 \times 10^3}{4 \times 245.0}$$
 = 124.1 a = 300.0 (N/mm²)

P」: 継手ボルトに作用するせん断力

n : ボルト本数 4 (本) A_b : ボルト 1 本の有効断面積 245.0 (mm²/本)

2. 深度 1.000 m ~ 2.000 m (p_h=25.000 kN/m²)

(1) 継手位置

長辺A-B

曲げモーメントは図1に示すようになることから、曲げモーメントが0となる位置付近に継手を設けるものである。曲げモーメントが0となる位置は次式により、

$$|M_B| - \frac{p_{h^*} L}{2} \times + \frac{p_h}{2} \times^2 = 0 \text{ L}$$

$$45.79 - \frac{25.000 \times 5.404}{2} \times + \frac{25.000}{2} \times^2 = 0$$

 x_0 = 794.8 (mm) となるが、これにライナープレートのボルト孔位置を考慮して、継手位置を定める。まずボルト孔のピッチ数は、

$$n_0 = \frac{(x_0 - 33)}{157} = \frac{(794.8 - 33)}{157} = 4.853$$

 $n_0 = 5.0$ とすると、
 $x_0 = (n_0 \times 0.157) + 0.033 = (5.0 \times 157) + 33 = 818.0$ (mm)

継手位置の採用値

	長さ方向	曲げモーメント
i	Χi	Mi
	(mm)	(kN•m/m)
1	818.0	1.097
2	818.0	1.097
3	818.0	1.097
4	818.0	1.097

$$M_J = {}_{iH^{\bullet}} max(|M_{max}|) \cdot 1 = 0.91993 \times 1.097 \times 1.0 = 1.009 (kN \cdot m)$$

 $N_J = {}_{aH^{\bullet}} N \cdot 1 = 0.49931 \times 30.263 \times 1.0 = 15.110 (kN)$

短辺B-C

曲げモーメントは図2に示すようになることから、継手を設ける位置は曲げモーメントが 最小となるスパン中央となる。すなわち、

$$x_{\circ} = \frac{2421.0}{2} = 1210.5 \text{ (mm)}$$

継手位置の採用値

	長さ方向	曲げモーメント
i	X _i	Mi
	(mm)	(kN•m/m)
1	1210.5	-27.478
2	1210.5	-27.478

 $M_{J} = \text{in-max}(|M_{\text{max}}|) \cdot 1 = 0.91993 \times 27.478 \times 1.0 = 25.278 \text{ (kN·m)}$

 $N_J = a_H \cdot N \cdot 1 = 0.49931 \times 67.550 \times 1.0 = 33.728 \text{ (kN)}$

 M」:最大曲げモーメント
 (kN·m/m)

 N」:軸力
 (kN/m)

 1:補強材設置間隔
 1.0 (m)

 x。:継手位置(計算値)
 (mm)

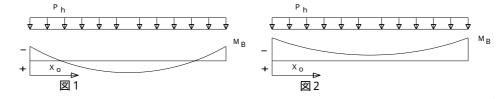
 x::継手位置(採用値)
 (mm)

(2) 継手ボルトの検討

長辺では

$$P_J = \frac{N_J}{2} + \frac{M_J}{h} = \frac{15.110}{2} + \frac{1.009}{0.150} = 14.285$$
 (kN) 従って継手ポルトの発生せん断応力度 は
$$= \frac{P_J}{n \cdot A_b} = \frac{14.285 \times 10^3}{4 \times 245.0}$$
 = 14.6 a = 300.0 (N/mm²)

短辺では


$$P_J = \frac{N_J}{2} + \frac{M_J}{h} = \frac{33.728}{2} + \frac{25.278}{0.150} = 185.384 \text{ (kN)}$$
 従って継手ボルトの発生せん断応力度 は
$$= \frac{P_J}{n \cdot A_b} = \frac{185.384 \times 10^3}{4 \times 245.0}$$
 = 189.2 a = 300.0 (N/mm²)

P」: 継手ボルトに作用するせん断力

n : ボルト本数 4 (本) A_b : ボルト 1 本の有効断面積 245.0 (mm²/本)

3. 深度 2.000 m ~ 3.000 m (ph=35.000 kN/m²)

(1) 継手位置

長辺A-B

曲げモーメントは図1に示すようになることから、曲げモーメントが0となる位置付近に継手を設けるものである。曲げモーメントが0となる位置は次式により、

$$|M_B| - \frac{p_B \cdot L}{2} \times + \frac{p_B}{2} \times^2 = 0 \text{ L}$$

$$64.11 - \frac{35.000 \times 5.404}{2} \times + \frac{35.000}{2} \times^2 = 0$$

 x_0 = 794.8 (mm) となるが、これにライナープレートのボルト孔位置を考慮して、継手位置を定める。まずボルト孔のピッチ数は、

$$n_0 = \frac{(x_0 - 33)}{157} = \frac{(794.8 - 33)}{157} = 4.853$$

 $n_0 = 5.0$ とすると、
 $x_0 = (n_0 \times 0.157) + 0.033 = (5.0 \times 157) + 33 = 818.0$ (mm)

継手位置の採用値

	長さ方向	曲げモーメント
i	Χi	Mi
	(mm)	(kN•m/m)
1	818.0	1.536
2	818.0	1.536
3	818.0	1.536
4	818.0	1.536

$$M_J = i_H \cdot max(|M_{max}|) \cdot 1 = 0.95363 \times 1.536 \times 1.0 = 1.465 \text{ (kN} \cdot \text{m)}$$

 $N_J = i_H \cdot N \cdot 1 = 0.56394 \times 42.368 \times 1.0 = 23.893 \text{ (kN)}$

短辺B-C

曲げモーメントは図2に示すようになることから、継手を設ける位置は曲げモーメントが 最小となるスパン中央となる。すなわち、

$$x_{\circ} = \frac{2421.0}{2} = 1210.5 \text{ (mm)}$$

継手位置の採用値

	長さ方向	曲げモーメント
i	Χi	Mi
	(mm)	(kN•m/m)
1	1210.5	-38.469
2	1210.5	-38.469

 $M_J = iH \cdot max(|M_{max}|) \cdot 1 = 0.95363 \times 38.469 \times 1.0 = 36.686 (kN \cdot m)$

 $N_J = a_H \cdot N \cdot 1 = 0.56394 \times 94.570 \times 1.0 = 53.332 \text{ (kN)}$

 M」:最大曲げモーメント
 (kN·m/m)

 N」:軸力
 (kN/m)

 1:補強材設置間隔
 1.0 (m)

 x。:継手位置(計算値)
 (mm)

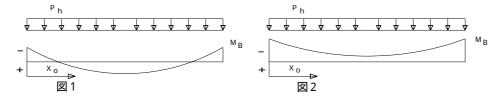
 x::継手位置(採用値)
 (mm)

(2) 継手ボルトの検討

長辺では

$$P_J = \frac{N_J}{2} + \frac{M_J}{h} = \frac{23.893}{2} + \frac{1.465}{0.175} = 20.318 \text{ (kN)}$$
 従って継手ボルトの発生せん断応力度 は
$$= \frac{P_J}{n \cdot A_b} = \frac{20.318 \times 10^3}{4 \times 245.0}$$
 = 20.7 a = 300.0 (N/mm²)

短辺では


$$P_J = \frac{N_J}{2} + \frac{M_J}{h} = \frac{53.332}{2} + \frac{36.686}{0.175} = 236.299 \text{ (kN)}$$
 従って継手ボルトの発生せん断応力度 は
$$= \frac{P_J}{n \cdot A_b} = \frac{236.299 \times 10^3}{4 \times 245.0}$$
 = 241.1 a = 300.0 (N/mm²)

P」: 継手ボルトに作用するせん断力

n : ボルト本数 4 (本) A_b : ボルト 1 本の有効断面積 245.0 (mm²/本)

4. 深度 3.000 m ~ 4.000 m (p_h=45.000 kN/m²)

(1) 継手位置

長辺A-B

曲げモーメントは図1に示すようになることから、曲げモーメントが0となる位置付近に継手を設けるものである。曲げモーメントが0となる位置は次式により、

$$|M_B| - \frac{p_{h^*} L}{2} \times + \frac{p_h}{2} \times^2 = 0 \text{ L}$$

$$82.43 - \frac{45.000 \times 5.404}{2} \times + \frac{45.000}{2} \times^2 = 0$$

 x_0 = 794.8 (mm) となるが、これにライナープレートのボルト孔位置を考慮して、継手位置を定める。まずボルト孔のピッチ数は、

$$n_0 = \frac{(x_0 - 33)}{157} = \frac{(794.8 - 33)}{157} = 4.853$$

 $n_0 = 5.0$ とすると、
 $x_0 = (n_0 \times 0.157) + 0.033 = (5.0 \times 157) + 33 = 818.0$ (mm)

継手位置の採用値

	長さ方向	曲げモーメント
i	Χi	Mi
	(mm)	(kN•m/m)
1	818.0	1.975
2	818.0	1.975
3	3 818.0 1.975	
4	818.0	1.975

$$M_J = _{iH^{\bullet}} max(|M_{max}|) \cdot 1 = 0.97099 \times 1.975 \times 1.0 = 1.918 (kN \cdot m)$$

 $N_J = _{aH^{\bullet}} N \cdot 1 = 0.61506 \times 54.473 \times 1.0 = 33.504 (kN)$

短辺B-C

曲げモーメントは図2に示すようになることから、継手を設ける位置は曲げモーメントが 最小となるスパン中央となる。すなわち、

$$x_{\circ} = \frac{2421.0}{2} = 1210.5 \text{ (mm)}$$

継手位置の採用値

	長さ方向	曲げモーメント
i	Xi	Mi
İ	(mm)	(kN•m/m)
1	1210.5	-49.461
2	1210.5	-49.461

 $M_J = iH \cdot max(|M_{max}|) \cdot 1 = 0.97099 \times 49.461 \times 1.0 = 48.026 (kN \cdot m)$

 $N_J = {}_{aH^{\bullet}} N \cdot 1 = 0.61506 \times 121.590 \times 1.0 = 74.786 \text{ (kN)}$

 M」:最大曲げモーメント
 (kN·m/m)

 N」:軸力
 (kN/m)

 1:補強材設置間隔
 1.0 (m)

 x。:継手位置(計算値)
 (mm)

 x::継手位置(採用値)
 (mm)

(2) 継手ボルトの検討

長辺では

短辺では

$$P_J = \frac{N_J}{2} + \frac{M_J}{h} = \frac{74.786}{2} + \frac{48.026}{0.200} = 277.523 \text{ (kN)}$$
 従って継手ボルトの発生せん断応力度 は
$$= \frac{P_J}{n \cdot A_b} = \frac{277.523 \times 10^3}{6 \times 245.0}$$
 = 188.8 a = 300.0 (N/mm²)

P』: 継手ボルトに作用するせん断力

n : ボルト本数6 (本)A。: ボルト1本の有効断面積245.0 (mm²/本)

6-3 継手板の検討

1. 深度 0.000 m ~ 1.000 m (p_h=15.000 kN/m²)

従って継手板に発生する曲げ応力度の照査は以下のとおりである。 長辺では

$$\frac{N_{J}}{2A_{J^{\bullet}}}_{Ha} + \frac{M_{J}}{Z_{J^{\bullet}}}_{Ha} = \frac{7.809 \times 10^{3}}{2 \times 972.0 \times 210} + \frac{0.564 \times 10^{6}}{122439.4 \times 210}$$
$$= 0.041 \quad 1.0$$

短辺では

$$\frac{N_{\text{J}}}{2\,A_{\text{J^{\bullet}}}}_{\text{Ha}} + \frac{M_{\text{J}}}{Z_{\text{J^{\bullet}}}}_{\text{Ha}} = \frac{17.430 \times 10^{3}}{2 \times 972.0 \times 210} + \frac{14.115 \times 10^{6}}{122439.4 \times 210}$$
$$= 0.592 \quad 1.0$$

A」: 継手板の有効断面積

B: :継手板の幅125.0 (mm)b: :ボルトの孔径22.0 (mm)t: :継手板板厚12.0 (mm)

Z」: 継手板の断面係数

h : 補強材の高さ 0.1 (m) +a : 継手板の許容応力度 210 (N/mm²) 2. 深度 1.000 m ~ 2.000 m (p_h=25.000 kN/m²)

従って継手板に発生する曲げ応力度の照査は以下のとおりである。 長辺では

$$\frac{N_{\text{J}}}{2\,A_{\text{J}^{\bullet}}}_{\text{Ha}} + \frac{M_{\text{J}}}{Z_{\text{J}^{\bullet}}}_{\text{Ha}} = \frac{15.110 \times 10^{3}}{2 \times 1272.0 \times 210} + \frac{1.009 \times 10^{6}}{191852.7 \times 210}$$
$$= 0.053 \quad 1.0$$

短辺では

$$\frac{N_{J}}{2A_{J^{\bullet} Ha}} + \frac{M_{J}}{Z_{J^{\bullet} Ha}} = \frac{33.728 \times 10^{3}}{2 \times 1272.0 \times 210} + \frac{25.278 \times 10^{6}}{191852.7 \times 210}$$

$$= 0.691 \quad 1.0$$

A」: 継手板の有効断面積

B: :継手板の幅150.0 (mm)b: :ボルトの孔径22.0 (mm)t: :継手板板厚12.0 (mm)

Z」: 継手板の断面係数

h : 補強材の高さ 0.2 (m) 4a : 継手板の許容応力度 210 (N/mm²)

3. 深度 2.000 m ~ 3.000 m (ph=35.000 kN/m²)

従って継手板に発生する曲げ応力度の照査は以下のとおりである。 長辺では

$$\frac{N_{\text{J}}}{2\,A_{\text{J}^{\bullet}}}_{\text{Ha}} + \frac{M_{\text{J}}}{Z_{\text{J}^{\bullet}}}_{\text{Ha}} = \frac{23.893 \times 10^{3}}{2 \times 1572.0 \times 210} + \frac{1.465 \times 10^{6}}{276237.5 \times 210}$$
$$= 0.061 \quad 1.0$$

短辺では

$$\frac{N_{J}}{2A_{J^{\bullet} Ha}} + \frac{M_{J}}{Z_{J^{\bullet} Ha}} = \frac{53.332 \times 10^{3}}{2 \times 1572.0 \times 210} + \frac{36.686 \times 10^{6}}{276237.5 \times 210}$$

$$= 0.713 \quad 1.0$$

A」: 継手板の有効断面積

B: :継手板の幅175.0 (mm)b: :ボルトの孔径22.0 (mm)t: :継手板板厚12.0 (mm)

Z」: 継手板の断面係数

h : 補強材の高さ 0.2 (m) 4a : 継手板の許容応力度 210 (N/mm²)

4. 深度 3.000 m ~ 4.000 m (ph=45.000 kN/m²)

従って継手板に発生する曲げ応力度の照査は以下のとおりである。 長辺では

$$\frac{N_{\text{J}}}{2A_{\text{J}^{\bullet}}}_{\text{Ha}} + \frac{M_{\text{J}}}{Z_{\text{J}^{\bullet}}}_{\text{Ha}} = \frac{33.504 \times 10^{3}}{2 \times 1872.0 \times 210} + \frac{1.918 \times 10^{6}}{375603.4 \times 210}$$
$$= 0.067 \quad 1.0$$

短辺では

$$\frac{N_{J}}{2A_{J^{\bullet}}}_{Ha} + \frac{M_{J}}{Z_{J^{\bullet}}}_{Ha} = \frac{74.786 \times 10^{3}}{2 \times 1872.0 \times 210} + \frac{48.026 \times 10^{6}}{375603.4 \times 210}$$
$$= 0.704 \qquad 1.0$$

A」: 継手板の有効断面積

B: :継手板の幅200.0 (mm)b: :ボルトの孔径22.0 (mm)t: :継手板板厚12.0 (mm)

Z」: 継手板の断面係数

h : 補強材の高さ 0.2 (m) 4a : 継手板の許容応力度 210 (N/mm²)

7 一覧表

・外枠

断面力の検討

		ライナー		補強材		短径		長径	
No	深度		竹用力	#17J	ライナー	補強材	ライナー	補強材	
INO		板厚	呼称	間隔	判定値	判定値	判定値	判定値	
	(m)	(mm)		(m)					
1	1.000	2.70	H - 125	1.0	0.522	0.864	0.524	0.851	
2	2.000	2.70	H - 150	1.0	0.508	0.969	0.510	0.950	
3	3.000	2.70	H - 175	1.0	0.438	0.929	0.441	0.904	
4	4.000	2.70	H - 200	1.0	0.379	0.864	0.382	0.835	

継手板の検討

		似土	壬垢		手板			短径			
	深度	松上	-17X	ボルト孔径	軸力	曲げ	判定値	軸力	曲げ	判定値	
No		幅	板厚		∓四ノリ	モーメント	アリスと100		モーメント	ナリルと「世	
		Bf	t _f	b₀	$N_{\rm J}$	N _J		N_{J}	$M_{ m J}$		
	(m)	(mm)	(mm)	(mm)	(kN)	(kN)		(kN)	(kN)		
1	1.000	125.0	12.0	22.0	7.809	0.564	0.041	17.430	14.115	0.592	
2	2.000	150.0	12.0	22.0	15.110	1.009	0.053	33.728	25.278	0.691	
3	3.000	175.0	12.0	22.0	23.893	1.465	0.061	53.332	36.686	0.713	
4	4.000	200.0	12.0	22.0	33.504	1.918	0.067	74.786	48.026	0.704	

継手用ボルトの検討

				長	径せん断応力	度	短径せん断応力度			
	深度	本数	有効断面積	作用力	発生	許容	作用力	発生	許容	
No				1F/HJ/J	応力度	応力度	IF/HJ/J	応力度	応力度	
			A_b	PJ		а	PJ		а	
	(m)	(本)	(mm²/本)	(kN)	(N/mm^2)	(N/mm^2)	(kN)	(N/mm^2)	(N/mm²)	
1	1.000	4	245.0	8.414	8.60	300.0	121.633	124.10	300.0	
2	2.000	4	245.0	14.285	14.60	300.0	185.384	189.20	300.0	
3	3.000	4	245.0	20.318	20.70	300.0	236.299	241.10	300.0	
4	4.000	6	245.0	26.341	17.90	300.0	277.523	188.80	300.0	

たわみ量の検討

No	深度	たわみ量	許容たわみ量
	(m)	(mm)	(mm)
1	1.000	48.1	27.0
2	2.000	38.2	27.0
3	3.000	28.5	27.0
4	4.000	22.0	27.0

限界深度表

No	板厚	補強材		限界深度	側圧	許容外圧
		鋼材名・呼称	間隔	「収えい木」支	识儿工	计台外压
	(mm)		(m)	(m)	(kN/m^2)	(kN/m^2)
1	2.7			0.000	10.000	4.287
2	3.2			0.000	10.000	5.072
3	4.0			0.000	10.000	6.287
4	4.5			0.000	10.000	7.073
5	5.3			0.000	10.000	8.288
6	6.0			0.000	10.000	9.336

8 数量概算表

名称	サイズ	数量
	(mm)	
ライナープレート	SP-10 t=2.7	32
ライナープレート	SP-7 t=2.7	16
ライナープレート	SP-6 t=2.7	16
ライナープレート	LP-8 t=2.7	32
組立ボルト	M16×30 (4.6 LP用)	776
組立ボルト	M16×45 (8.8 HR用)	490
補強リング	H125 × 125 × 6.5 × 9.0 × 3768.0	4
補強リング	H125×125×6.5×9.0×2028.5	8
補強リング	H150 × 150 × 7.0 × 10.0 × 3768.0	4
補強リング	H150 × 150 × 7.0 × 10.0 × 2028.5	8
補強リング	H175×175×7.5×11.0×3768.0	4
補強リング	H175×175×7.5×11.0×2028.5	8
補強リング	H200 × 200 × 8.0 × 12.0 × 3768.0	8
補強リング	$H200 \times 200 \times 8.0 \times 12.0 \times 2028.5$	16
継手板	PL125 x 12 x 310	24
継手板	PL150 × 12 × 310	24
継手板	PL175 × 12 × 310	24
継手板	PL200 × 12 × 440	48
継手ボルト	M20 × 50	576
継手ボルト	M20×60	576